An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 14-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimation for the nonlinearity of Dalai's Boolean functions with the maximal algebraic immunity in even number of variables is given. It is proved that the estimation is achieved.
Keywords: Boolean functions, nonlinearity, algebraic immunity.
@article{PDM_2013_1_a1,
     author = {N. A. Kolomeec},
     title = {An upper bound for the nonlinearity of some {Boolean} functions with maximal possible algebraic immunity},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--16},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 14
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/
LA  - ru
ID  - PDM_2013_1_a1
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 14-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/
%G ru
%F PDM_2013_1_a1
N. A. Kolomeec. An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 14-16. http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/

[1] Courtois N. and Meier W., “Algebraic attacks on stream ciphers with liner feedback”, LNCS, 2656, 2003, 345–359 | MR | Zbl

[2] Meier W., Pasalic E., and Carlet C., “Algebraic attacks and decomposition of Boolean functions”, LNCS, 3027, 2004, 474–491 | MR | Zbl

[3] Dalai D.K., Maitra S., and Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Designs, Codes and Cryptography, 40:1 (2006), 41–58 | DOI | MR | Zbl

[4] Lobanov M. S., “Tochnoe sootnoshenie mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskretnaya matematika, 18:3 (2006), 152–159 | DOI | MR | Zbl

[5] Li Ch., A survey on construction of Boolean function with optimum algebraic immunity (AI), http://www.frisc.no/wp-content/uploads/2011/10/Li-A-survey-on-constructions-of-BFs-with-optimum-AI.pdf