An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 14-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An estimation for the nonlinearity of Dalai's Boolean functions with the maximal algebraic immunity in even number of variables is given. It is proved that the estimation is achieved.
Keywords: Boolean functions, nonlinearity, algebraic immunity.
@article{PDM_2013_1_a1,
     author = {N. A. Kolomeec},
     title = {An upper bound for the nonlinearity of some {Boolean} functions with maximal possible algebraic immunity},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--16},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 14
EP  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/
LA  - ru
ID  - PDM_2013_1_a1
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 14-16
%N 1
%U http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/
%G ru
%F PDM_2013_1_a1
N. A. Kolomeec. An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 14-16. http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/

[1] Courtois N. and Meier W., “Algebraic attacks on stream ciphers with liner feedback”, LNCS, 2656, 2003, 345–359 | MR | Zbl

[2] Meier W., Pasalic E., and Carlet C., “Algebraic attacks and decomposition of Boolean functions”, LNCS, 3027, 2004, 474–491 | MR | Zbl

[3] Dalai D.K., Maitra S., and Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Designs, Codes and Cryptography, 40:1 (2006), 41–58 | DOI | MR | Zbl

[4] Lobanov M. S., “Tochnoe sootnoshenie mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskretnaya matematika, 18:3 (2006), 152–159 | DOI | MR | Zbl

[5] Li Ch., A survey on construction of Boolean function with optimum algebraic immunity (AI), http://www.frisc.no/wp-content/uploads/2011/10/Li-A-survey-on-constructions-of-BFs-with-optimum-AI.pdf