Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_1_a1, author = {N. A. Kolomeec}, title = {An upper bound for the nonlinearity of some {Boolean} functions with maximal possible algebraic immunity}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {14--16}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/} }
TY - JOUR AU - N. A. Kolomeec TI - An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity JO - Prikladnaâ diskretnaâ matematika PY - 2013 SP - 14 EP - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/ LA - ru ID - PDM_2013_1_a1 ER -
N. A. Kolomeec. An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 14-16. http://geodesic.mathdoc.fr/item/PDM_2013_1_a1/
[1] Courtois N. and Meier W., “Algebraic attacks on stream ciphers with liner feedback”, LNCS, 2656, 2003, 345–359 | MR | Zbl
[2] Meier W., Pasalic E., and Carlet C., “Algebraic attacks and decomposition of Boolean functions”, LNCS, 3027, 2004, 474–491 | MR | Zbl
[3] Dalai D.K., Maitra S., and Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Designs, Codes and Cryptography, 40:1 (2006), 41–58 | DOI | MR | Zbl
[4] Lobanov M. S., “Tochnoe sootnoshenie mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskretnaya matematika, 18:3 (2006), 152–159 | DOI | MR | Zbl
[5] Li Ch., A survey on construction of Boolean function with optimum algebraic immunity (AI), http://www.frisc.no/wp-content/uploads/2011/10/Li-A-survey-on-constructions-of-BFs-with-optimum-AI.pdf