Investigation of the solution stability of vector investment Boolean problem in the case of H\"older metric in a~criteria space
Prikladnaâ diskretnaâ matematika, no. 4 (2012), pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of a Pareto-optimal portfolio in the multicriteria discrete variant of Markowitz's investment problem with the Wald's maximin efficiency criteria is analysed. The lower and upper bounds for the stability radius of such a portfolio are obtained in the case of the Hölder metric $l_p$, $1\leq p\leq\infty$, in the criteria space of the problem parameters.
Keywords: vector investment problem, Pareto-optimal investment portfolio, Wald's efficiency criteria, stability radius of portfolio, the Hölder metric.
@article{PDM_2012_4_a4,
     author = {V. A. Emelichev and V. V. Korotkov},
     title = {Investigation of the solution stability of vector investment {Boolean} problem in the case of  {H\"older} metric in a~criteria space},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {61--72},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_4_a4/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - V. V. Korotkov
TI  - Investigation of the solution stability of vector investment Boolean problem in the case of  H\"older metric in a~criteria space
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 61
EP  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_4_a4/
LA  - ru
ID  - PDM_2012_4_a4
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A V. V. Korotkov
%T Investigation of the solution stability of vector investment Boolean problem in the case of  H\"older metric in a~criteria space
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 61-72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_4_a4/
%G ru
%F PDM_2012_4_a4
V. A. Emelichev; V. V. Korotkov. Investigation of the solution stability of vector investment Boolean problem in the case of  H\"older metric in a~criteria space. Prikladnaâ diskretnaâ matematika, no. 4 (2012), pp. 61-72. http://geodesic.mathdoc.fr/item/PDM_2012_4_a4/

[1] Markowitz H., “Portfolio selection”, J. Finance, 7:1 (1952), 77–91

[2] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, Willey, New York, 1991, 400 pp.

[3] Sharp U. F., Aleksander G. Dzh., Beili D. V., Investitsii, Infra-M, M., 2003

[4] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya v metrike Gëldera”, Kibernetika i sistemnyi analiz, 42:4 (2006), 175–181 | Zbl

[5] Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti mnogokriterialnoi zadachi tselochislennogo lineinogo programmirovaniya v sluchae monotonnoi normy”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2007, no. 5, 45–51 | MR

[6] Emelichev V. A., Karelkina O.V., “Konechnye koalitsionnye igry: parametrizatsiya kontseptsii ravnovesiya (ot Pareto do Nesha) i ustoichivost effektivnoi situatsii v metrike Geldera”, Diskretnaya matematika, 21:2 (2009), 43–50 | DOI | MR | Zbl

[7] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0-1 programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR

[8] Emelichev V. A., Korotkov V. V., “Otsenki radiusa ustoichivosti leksikograficheskogo optimuma vektornoi bulevoi zadachi s kriteriyami riskov Sevidzha”, Diskret. analiz i issled. operatsii, 18:2 (2011), 41–50 | MR | Zbl

[9] Emelichev V. A., Korotkov V. V., Kuzmin K. G., “Mnogokriterialnaya investitsionnaya zadacha v usloviyakh neopredelennosti i riska”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2011, no. 6, 157–164 | MR

[10] Emelichev V. A., Korotkov V. V., “O radiuse ustoichivosti effektivnogo resheniya mnogokriterialnoi zadachi portfelnoi optimizatsii s kriteriyami Sevidzha”, Diskretnaya matematika, 23:4 (2011), 33–38 | DOI | MR

[11] Emelichev V. A., Korotkov V. V., “Postoptimalnyi analiz mnogokriterialnoi investitsionnoi zadachi Markovitsa”, Informatika, 2011, no. 4, 5–14

[12] Emelichev V., Korotkov V., “On stability radius of the multicriteria variant of Markowitz's investment portfolio problem”, Bull. Acad. Sci. Moldova. Mathematics, 2011, no. 1, 83–94 | MR | Zbl

[13] Portfolio Decision Analysis: Improved Methods for Resource Allocation, International Series in Operations Research and Management Science, eds. A. Salo, J. Keisler, A. Morton, Springer, New York, 2011, 424 pp.

[14] Bronshtein E. M., Kachkaeva M. M., Tulupova E. V., “Upravlenie portfelem tsennykh bumag na osnove kompleksnykh kvantilnykh mer riska”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2011, no. 1, 178–183 | MR

[15] Tsarev V. V., Otsenka ekonomicheskoi effektivnosti investitsii, Piter, SPb., 2004, 464 pp.

[16] Vilenskii P. L., Livshits V. N., Smolyak S. A., Otsenka effektivnosti investitsionnykh proektov: teoriya i praktika, Delo, M., 2008, 1104 pp.

[17] Wald A., Statistical Decision Functions, Wiley, New York, 1950, 179 pp. | MR | Zbl

[18] Emelichev V., Korotkov V., “Post-optimal analysis of investment problem with Wald's ordered maximin criteria”, Bull. Acad. Sci. Moldova. Mathematics, 2012, no. 1, 59–69 | Zbl

[19] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, M., 1998 | MR | Zbl

[20] Fon Neiman Dzh., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970, 707 pp. | MR