About primitive systems of natural numbers
Prikladnaâ diskretnaâ matematika, no. 2 (2012), pp. 5-14
Voir la notice de l'article provenant de la source Math-Net.Ru
The set structure of primitive systems of natural numbers is described, and the main properties of such systems are installed. An algorithm for enumerating primitive systems of numbers not exceeding a given number $m$ is constructed using the concepts of deadlockness and $k$-minimalities of primitive systems. Also, some algorithms are offered for determining the primitiveness index of a finite directed graph by means of depth-first search and the exponentiation of the vertex adjacency matrix. Computational complexity of the algorithms is estimated.
Keywords:
primitive system of natural numbers, primitive graph, exponent
Mots-clés : primitive matrix, subexponent.
Mots-clés : primitive matrix, subexponent.
@article{PDM_2012_2_a0,
author = {S. N. Kjazhin and V. M. Fomichev},
title = {About primitive systems of natural numbers},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--14},
publisher = {mathdoc},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2012_2_a0/}
}
S. N. Kjazhin; V. M. Fomichev. About primitive systems of natural numbers. Prikladnaâ diskretnaâ matematika, no. 2 (2012), pp. 5-14. http://geodesic.mathdoc.fr/item/PDM_2012_2_a0/