A cellular automata model for the dynamics of organisms population in Baikal
Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 121-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cellular automata model of Baikal organisms population dynamics is proposed and investigated. The results of computational experiments for the cases of predators gathering and area pollution are presented.
Keywords: self-organization, cellular automata, population dynamic model, prey–predator system.
Mots-clés : composition
@article{PDM_2012_1_a8,
     author = {I. V. Afanasyev},
     title = {A cellular automata model for the dynamics of organisms population in {Baikal}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {121--132},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_1_a8/}
}
TY  - JOUR
AU  - I. V. Afanasyev
TI  - A cellular automata model for the dynamics of organisms population in Baikal
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 121
EP  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_1_a8/
LA  - ru
ID  - PDM_2012_1_a8
ER  - 
%0 Journal Article
%A I. V. Afanasyev
%T A cellular automata model for the dynamics of organisms population in Baikal
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 121-132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_1_a8/
%G ru
%F PDM_2012_1_a8
I. V. Afanasyev. A cellular automata model for the dynamics of organisms population in Baikal. Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 121-132. http://geodesic.mathdoc.fr/item/PDM_2012_1_a8/

[1] Khaken G., Sinergetika, Mir, M., 1980, 406 pp. | MR

[2] Wolfram S., A new kind of science, Wolfram Media Inc., USA, 2002, 1197 pp. | MR | Zbl

[3] Chua L. O., CNN: A Paradigm for Complexity, World Scientific Series on Nonlinear Science. University of California, Berkely, 1998, 320 pp.

[4] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, IKI, Izhevsk, 2008, 300 pp.

[5] Madore B., Freedman W., “Computer simulation of the Belousov–Zhabotinski reaction”, Science, 222 (1983), 615–618 | DOI

[6] Bandman O., “Simulation of complex phenomena by Cellular Automata composition”, Science, 222 (1983), 9–20

[7] Afanasev I., “Issledovanie evolyutsii kletochnykh avtomatov, modeliruyuschikh protsess “razdeleniya faz” na treugolnoi setke”, Prikladnaya diskretnaya matematika, 2010, no. 4, 79–90

[8] Bandman O., “Parallel Composition of Asynchronous Cellular Automata Simulating Reaction Diffusion Processes”, LNCS, 6350, 2010, 395–398 | Zbl

[9] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR

[10] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, IKI, Izhevsk, 2003, 368 pp.

[11] Zorkaltsev V. I., Kazazaeva A. V., Mokryi I. V, “Model vzaimodeistviya trekh pelagicheskikh vidov organizmov ozera Baikal”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie (Irkutskii gosudarstvennyi universitet putei soobscheniya), 2008, no. 1, 182–193

[12] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Sistemnaya informatika, 2006, no. 10, 58–113

[13] Medvedev Y. G., “Multi-particle Cellular Automata Models For Diffusion Simulation”, Methods and tools of parallel programming multicomputers, LNCS, 6083, 2011, 204–211