Theory of complete orthogonal direct decompositions of vector spaces
Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 11-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory is constructed for the complete orthogonal (with respect to generalized orthogonalities defined by certain partial symmetric bilinear functions) direct decompositions of vector spaces $V$ such that the quotient of $V$ by a certain particular subspace is finite-dimensional. The main result of the theory is a description of all such decompositions. This theory has an application to the theory of direct decompositions of $p$-ary functions, where $p$ is a prime.
Keywords: vector space, orthogonality, partial symmetric bilinear function, complete decomposition, Abelian group.
@article{PDM_2012_1_a1,
     author = {M. I. Anokhin},
     title = {Theory of complete orthogonal direct decompositions of vector spaces},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {11--49},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_1_a1/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - Theory of complete orthogonal direct decompositions of vector spaces
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 11
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_1_a1/
LA  - ru
ID  - PDM_2012_1_a1
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T Theory of complete orthogonal direct decompositions of vector spaces
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 11-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_1_a1/
%G ru
%F PDM_2012_1_a1
M. I. Anokhin. Theory of complete orthogonal direct decompositions of vector spaces. Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 11-49. http://geodesic.mathdoc.fr/item/PDM_2012_1_a1/

[1] Anokhin M. I., “O rasscheplyaemosti $p$-ichnykh funktsii”, Matem. sb., 198:7 (2007), 31–44 | DOI | MR | Zbl

[2] Logachëv O. A., Salnikov A. A., Yaschenko V. V., “Nekotorye kharakteristiki “nelineinosti” gruppovykh otobrazhenii”, Diskret. analiz i issled. oper. Ser. 1, 8:1 (2001), 40–54 | MR | Zbl

[3] Logachëv O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004 | MR

[4] Newman M., Integral matrices, Academic Press, New York–London, 1972 | MR | Zbl