Populations of interacting automata
Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The population of automata is a model of collective behavior of automata. Modeling of population dynamics is implemented by a Causal Petri Net. The places in it represent the states of automata. The net marking specifies a number of automata that are in corresponding states. The transitions in the net represent events that result from the joint actions of the elements in the population. For each transition, a value is specified defining the probability (rate) of the transition response so that a system of differential equations can be built. These equations describe the dynamics of the average number of automata in places under logical conditions specified by Petri net. The numerical solution of the system is obtained by using a computer simulation.
Mots-clés : population of automata, causal net
Keywords: Petri net, mean value dynamics, modeling.
@article{PDM_2011_4_a9,
     author = {Yu. V. Berezovsky and V. A. Vorob'ev},
     title = {Populations of interacting automata},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {89--104},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_4_a9/}
}
TY  - JOUR
AU  - Yu. V. Berezovsky
AU  - V. A. Vorob'ev
TI  - Populations of interacting automata
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 89
EP  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_4_a9/
LA  - ru
ID  - PDM_2011_4_a9
ER  - 
%0 Journal Article
%A Yu. V. Berezovsky
%A V. A. Vorob'ev
%T Populations of interacting automata
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 89-104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_4_a9/
%G ru
%F PDM_2011_4_a9
Yu. V. Berezovsky; V. A. Vorob'ev. Populations of interacting automata. Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 89-104. http://geodesic.mathdoc.fr/item/PDM_2011_4_a9/

[1] Achasova S. M., Bandman O. L., Korrektnost parallelnykh vychislitelnykh protsessov, Nauka, Novosibirsk, 1990, 314 pp. | MR | Zbl

[2] Venttsel E S., Ovcharov L. A., Teoriya sluchainykh protsessov i eë inzhenernye prilozheniya, Uchebn. posobie dlya vtuzov, 2-e izd., ster., Vysshaya shkola, M., 2000, 383 pp.

[3] Vorobev V. A., Kochnev A. I., “Populyatsionnoe modelirovanie kollektivnogo povedeniya avtomatov”, Vestnik Tomskogo gosuniversiteta, 2007, Prilozhenie No 23, 270–275

[4] Kapitsa S. P., Kurdyumov S. P., Malinetskii G. G., Sinergetika i prognozy buduschego, 2-e izd., Editorial URSS, M., 2001, 288 pp.

[5] Vorobev V. A., Vorobeva T. V., “Ekologicheskaya pauza – sistemnyi krizis chelovechestva”, Issledovaniya v oblasti globalnogo katastrofizma, Trudy ANIG “Prognoz”, 1, NGU, Novosibirsk, 2006, 69–109

[6] Korotaev A. V., Komarova N. L., Khalturina D. A., Zakony istorii: vekovye tsikly i tysyacheletnie trendy. Demografiya, ekonomika, voiny, 2-e izd., ispr. i dop., ed. N. N. Kradin, KomKniga, M., 2007, 256 pp.

[7] Korotaev A. V., Malkov A. S., Khalturina D. A., Zakony istorii: matematicheskoe modelirovanie razvitiya Mir-Sistemy. Demografiya, ekonomika, kultura, 2-e izd., ispr. i dop., ed. N. N. Kradin, KomKniga, M., 2007, 224 pp.