Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2011_4_a2, author = {I. A. Shilin and V. V. Kityukov}, title = {Homomorphic stability of pairs of small order groups}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {22--27}, publisher = {mathdoc}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2011_4_a2/} }
I. A. Shilin; V. V. Kityukov. Homomorphic stability of pairs of small order groups. Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 22-27. http://geodesic.mathdoc.fr/item/PDM_2011_4_a2/
[1] Sebeldin A. M., Smorkalova A. E., “Opredelyaemost abelevykh grupp gruppami gomomorfizmov i polugruppami avtomorfizmov”, Matem. zametki, 84:4 (2008), 595–601 | MR | Zbl
[2] Grinshpon S. Ya., Eltsova T. A., “Gomomorfnaya ustoichivost abelevykh grupp”, Fundam. i prikl. mat., 14:5 (2008), 67–76 | MR
[3] Valkan D., “On some homomorphisms of direct sums of modules”, Proc. Razmodze Math. Inst., 124 (2000), 151–162 | MR
[4] O'Neill J. D., “On homomorphisms between direct products of infinite cyclic groups”, Commun. Algebra, 28:11 (2000), 5047–5052 | DOI | MR
[5] Tushev A. V., “O razreshimykh gruppakh, chi konechnye gomomorfnye obrazy imeyut ogranichennyi rang”, Matem. zametki, 56:5 (1994), 136–139 | MR | Zbl
[6] Segev Y., “On finite homomorphic images of the multiplicative group of a division algebra”, Ann. Math., 149:1 (1999), 219–251 | DOI | MR | Zbl
[7] Conway J. H., Curtis R. T., Norton S. P., et al., Atlas of Finite Groups, University Press, Oxford, 1985, 252 pp. | MR
[8] Shilin I. A., Vvedenie v algebru, Chast pervaya, MGSGI, M., 2010, 160 pp.
[9] Aleksandrov A. A., Nizhnikov A. I., Shilin I. A., “Kompyuternoe vychislenie podgrupp i normalnykh delitelei neabelevykh grupp poryadka ne vyshe 20”, Prepodavatel XXI veka, 2011, no. 1, Ch. 2, 214–220