Homomorphic stability of pairs of small order groups
Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 22-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the orders of groups $G$ and $H$ aren't greater than 12. We apply a computer program created by the authors for researching algebraic structure of the set of $G\to H$ homomorphism's images.
Keywords: finite groups homomorphic stability.
@article{PDM_2011_4_a2,
     author = {I. A. Shilin and V. V. Kityukov},
     title = {Homomorphic stability of pairs of small order groups},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {22--27},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_4_a2/}
}
TY  - JOUR
AU  - I. A. Shilin
AU  - V. V. Kityukov
TI  - Homomorphic stability of pairs of small order groups
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 22
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_4_a2/
LA  - ru
ID  - PDM_2011_4_a2
ER  - 
%0 Journal Article
%A I. A. Shilin
%A V. V. Kityukov
%T Homomorphic stability of pairs of small order groups
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 22-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_4_a2/
%G ru
%F PDM_2011_4_a2
I. A. Shilin; V. V. Kityukov. Homomorphic stability of pairs of small order groups. Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 22-27. http://geodesic.mathdoc.fr/item/PDM_2011_4_a2/