Interval on one party regular edge 5-coloring of bipatite graph
Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 85-91

Voir la notice de l'article provenant de la source Math-Net.Ru

For a bipartite graph $G=(X,Y,E)$ where the degree of any vertex in $X$ equals 2 and maximal degree of the vertex in $Y$ equals 5, conditions for existence of regular edge 5-coloring being an interval on $X$
Mots-clés : bipatite graph
Keywords: edge-coloring, NP-completeness.
@article{PDM_2011_3_a6,
     author = {A. M. Magomedov and T. A. Magomedov},
     title = {Interval on one party regular edge 5-coloring of bipatite graph},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {85--91},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_3_a6/}
}
TY  - JOUR
AU  - A. M. Magomedov
AU  - T. A. Magomedov
TI  - Interval on one party regular edge 5-coloring of bipatite graph
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 85
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_3_a6/
LA  - ru
ID  - PDM_2011_3_a6
ER  - 
%0 Journal Article
%A A. M. Magomedov
%A T. A. Magomedov
%T Interval on one party regular edge 5-coloring of bipatite graph
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 85-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_3_a6/
%G ru
%F PDM_2011_3_a6
A. M. Magomedov; T. A. Magomedov. Interval on one party regular edge 5-coloring of bipatite graph. Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 85-91. http://geodesic.mathdoc.fr/item/PDM_2011_3_a6/