Computational complexity of the problem of approximation by graphs with connected components of bounded size
Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 80-84
Voir la notice de l'article provenant de la source Math-Net.Ru
New versions of the graph approximation problem with the bounded size of connected components in approximating graphs are proposed. It is shown that if the cardinality of each component in the approximating graphs is less or equal to the given integer $p \geqslant 3$ then the graph approximation problem is $NP$-hard, whereas in the case of $p=2$ the problem is solvable in a polynomial time.
Keywords:
graph approximation, polynomial-time problem, $NP$-hard problem.
@article{PDM_2011_3_a5,
author = {V. P. Il'ev and A. A. Navrocka},
title = {Computational complexity of the problem of approximation by graphs with connected components of bounded size},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {80--84},
publisher = {mathdoc},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_3_a5/}
}
TY - JOUR AU - V. P. Il'ev AU - A. A. Navrocka TI - Computational complexity of the problem of approximation by graphs with connected components of bounded size JO - Prikladnaâ diskretnaâ matematika PY - 2011 SP - 80 EP - 84 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2011_3_a5/ LA - ru ID - PDM_2011_3_a5 ER -
%0 Journal Article %A V. P. Il'ev %A A. A. Navrocka %T Computational complexity of the problem of approximation by graphs with connected components of bounded size %J Prikladnaâ diskretnaâ matematika %D 2011 %P 80-84 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2011_3_a5/ %G ru %F PDM_2011_3_a5
V. P. Il'ev; A. A. Navrocka. Computational complexity of the problem of approximation by graphs with connected components of bounded size. Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 80-84. http://geodesic.mathdoc.fr/item/PDM_2011_3_a5/