On the complexity of proving that a Boolean function is not a binary read-once
Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 12-16
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that it is sufficiently to present a linear number of values of a given Boolean function to prove that it is not read-once over the binary basis.
Keywords:
read-once Boolean function, proof complexity.
@article{PDM_2011_3_a1,
author = {A. A. Voronenko},
title = {On the complexity of proving that {a~Boolean} function is not a~binary read-once},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {12--16},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_3_a1/}
}
A. A. Voronenko. On the complexity of proving that a Boolean function is not a binary read-once. Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 12-16. http://geodesic.mathdoc.fr/item/PDM_2011_3_a1/
[1] Stetsenko V. A., “O predplokhikh bazisakh v $P_2$”, Matem. voprosy kibernetiki, 4, Fizmatlit, M., 1992, 139–177 | MR
[2] Peryazev N. A., Slabopovtornye bulevy funktsii v binarnom bazise, Diskretnaya matematika i informatika, 4, Izd-vo Irkut. un-ta, Irkutsk, 1998, 12 pp.
[3] Voronenko A. A., “O proveryayuschikh testakh dlya bespovtornykh funktsii”, Matem. voprosy kibernetiki, 11, Fizmatlit, M., 2002, 163–176 | MR