On congruences of paths
Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 96-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A congruence of a path is an equivalence relation on the set of path's vertices all of whose classes are independent subsets. It is shown that each connected graph is a quotient-graph of a suitable path. Valuations are established for the minimal length of a chain whose quotient-graph is a given graph.
Keywords: path, congruence, tree, star.
Mots-clés : quotient-graph
@article{PDM_2011_2_a7,
     author = {E. O. Karmanova},
     title = {On congruences of paths},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {96--100},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_2_a7/}
}
TY  - JOUR
AU  - E. O. Karmanova
TI  - On congruences of paths
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 96
EP  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_2_a7/
LA  - ru
ID  - PDM_2011_2_a7
ER  - 
%0 Journal Article
%A E. O. Karmanova
%T On congruences of paths
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 96-100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_2_a7/
%G ru
%F PDM_2011_2_a7
E. O. Karmanova. On congruences of paths. Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 96-100. http://geodesic.mathdoc.fr/item/PDM_2011_2_a7/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997, 367 pp. | MR | Zbl

[2] Salii V. N., “Optimalnye rekonstruktsii grafov”, Sovremennye problemy differentsialnoi geometrii i obschei algebry., Izd-vo Sarat. un-ta, Saratov, 2008, 59–65

[3] Ore O., Teoriya grafov, 2-e izd., Nauka, M., 1980, 336 pp. | MR

[4] Hayes J. P., “A graph model for fault-tolerant computing systems”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR

[5] Abrosimov M. B., “Nekotorye voprosy o minimalnykh rasshireniyakh grafov”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 5:1 (2005), 86–91 | MR

[6] Verzakov G. F., Kinsht N. V., Rabinovich V. I., Timonen L. S., Vvedenie v tekhnicheskuyu diagnostiku, Energiya, M., 1968

[7] Mirzayanov M. R., “Silno svyaznye kongruentsii orientirovannykh grafov”, Teoreticheskie problemy informatiki i ee prilozhenii, 7, Izd-vo Sarat. un-ta, Saratov, 2006, 104–114

[8] Mirzayanov M. R., “O minimalnykh silno svyaznykh kongruentsiyakh orientirovannykh tsepei”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 6:1/2 (2006), 91–95

[9] Prodinger H. and Tichy R. F., “Fibonacci numbers of graphs”, Fibon. Quart., 20:1 (1982), 16–21 | MR | Zbl

[10] Karmanova E. O., “O kongruentsiyakh tsepei i tsiklov”, Kompyuternye nauki i informatsionnye tekhnologii, Izd-vo Sarat. un-ta, Saratov, 2009, 238