Attractors of dynamical systems associated with cycles
Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 90-95

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem that describes attractors of dynamical systems associated with cycles. States of such a system are binary vectors of a given dimension, and evolutional function transforms vectors according to the following rules: if both the initial component is 0 and the final one is 1 they are replaced by 1 and 0 respectively and all digrams 10 are replaced simultaneously by 01.
Keywords: attractor, dynamical system, evolutional function.
@article{PDM_2011_2_a6,
     author = {A. V. Vlasova},
     title = {Attractors of dynamical systems associated with cycles},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {90--95},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_2_a6/}
}
TY  - JOUR
AU  - A. V. Vlasova
TI  - Attractors of dynamical systems associated with cycles
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 90
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_2_a6/
LA  - ru
ID  - PDM_2011_2_a6
ER  - 
%0 Journal Article
%A A. V. Vlasova
%T Attractors of dynamical systems associated with cycles
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 90-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_2_a6/
%G ru
%F PDM_2011_2_a6
A. V. Vlasova. Attractors of dynamical systems associated with cycles. Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 90-95. http://geodesic.mathdoc.fr/item/PDM_2011_2_a6/