Skeleton automata
Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 73-76
A skeleton automaton is an automaton in which the relation of mutual accessibility of states is the identity relation. We prove that automata that admit a regular enumeration of states are exactly skeleton automata. It is shown how for a given automaton one can construct an automaton with minimal number of states that has the same subautomata lattice, and is necessarily a skeleton automaton. A procedure is proposed to obtain a skeleton automaton from a given automaton by removal of minimal number of arcs in its transition diagram.
Keywords:
automaton, strongly connected automaton, skeleton automaton, regular enumeration of states, subautomata lattice.
@article{PDM_2011_2_a4,
author = {V. N. Salii},
title = {Skeleton automata},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {73--76},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_2_a4/}
}
V. N. Salii. Skeleton automata. Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 73-76. http://geodesic.mathdoc.fr/item/PDM_2011_2_a4/
[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR | Zbl
[2] Salii V. N., “Karkas avtomata”, Prikladnaya diskretnaya matematika, 2010, no. 1(7), 63–67
[3] Verzakov G. F., Kinsht N. V., Rabinovich V. I., Timonen A. G., Vvedenie v tekhnicheskuyu diagnostiku, Energiya, M., 1968, 224 pp.
[4] Gill F., Flexer R., “Periodic decomposition of sequential machines”, J. Assoc. Comput. Mach., 15 (1967), 666–676 | MR