Skeleton automata
Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 73-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A skeleton automaton is an automaton in which the relation of mutual accessibility of states is the identity relation. We prove that automata that admit a regular enumeration of states are exactly skeleton automata. It is shown how for a given automaton one can construct an automaton with minimal number of states that has the same subautomata lattice, and is necessarily a skeleton automaton. A procedure is proposed to obtain a skeleton automaton from a given automaton by removal of minimal number of arcs in its transition diagram.
Keywords: automaton, strongly connected automaton, skeleton automaton, regular enumeration of states, subautomata lattice.
@article{PDM_2011_2_a4,
     author = {V. N. Salii},
     title = {Skeleton automata},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {73--76},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_2_a4/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - Skeleton automata
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 73
EP  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_2_a4/
LA  - ru
ID  - PDM_2011_2_a4
ER  - 
%0 Journal Article
%A V. N. Salii
%T Skeleton automata
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 73-76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_2_a4/
%G ru
%F PDM_2011_2_a4
V. N. Salii. Skeleton automata. Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 73-76. http://geodesic.mathdoc.fr/item/PDM_2011_2_a4/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR | Zbl

[2] Salii V. N., “Karkas avtomata”, Prikladnaya diskretnaya matematika, 2010, no. 1(7), 63–67

[3] Verzakov G. F., Kinsht N. V., Rabinovich V. I., Timonen A. G., Vvedenie v tekhnicheskuyu diagnostiku, Energiya, M., 1968, 224 pp.

[4] Gill F., Flexer R., “Periodic decomposition of sequential machines”, J. Assoc. Comput. Mach., 15 (1967), 666–676 | MR