On some measures of nonlinearity for Boolean functions
Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinearity measure is defined for a Boolean function $f$ as a distance from $f$ to the set of algebraic degenerated functions. Relations between this measure and some early offered measures of the nonlinearity are considered. Also, we investigate the order of algebraic degeneration of those functions which are mostly close to $f$.
Keywords: nonlinearity of Boolean functions, algebraic degenerated functions, linear structures space, cryptography.
@article{PDM_2011_2_a0,
     author = {E. K. Alekseev},
     title = {On some measures of nonlinearity for {Boolean} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--16},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_2_a0/}
}
TY  - JOUR
AU  - E. K. Alekseev
TI  - On some measures of nonlinearity for Boolean functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 5
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_2_a0/
LA  - ru
ID  - PDM_2011_2_a0
ER  - 
%0 Journal Article
%A E. K. Alekseev
%T On some measures of nonlinearity for Boolean functions
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 5-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_2_a0/
%G ru
%F PDM_2011_2_a0
E. K. Alekseev. On some measures of nonlinearity for Boolean functions. Prikladnaâ diskretnaâ matematika, no. 2 (2011), pp. 5-16. http://geodesic.mathdoc.fr/item/PDM_2011_2_a0/

[1] Siegenthaler T., “Decrypting a class of stream chipher using ciphertext only”, IEEE Trans. Computers, C-34:1 (1985), 81–85 | DOI

[2] Matsui M., “Linear cryptanalysis method for DES cipher”, LNCS, 765, 1993, 386–397

[3] Meier W., Staffelbach O., “Nonlinearity criteria for cryptographic functions”, LNCS, 434, 1990, 549–562 | MR | Zbl

[4] Alekseev E. K., “O nekotorykh algebraicheskikh i kombinatornykh svoistvakh korrelyatsionno-immunnykh bulevykh funktsii”, Diskretnaya matematika, 22:3 (2010), 110–126 | MR | Zbl

[5] Dawson E., Wu C. K., “Construction of correlation immune boolean functions”, LNCS, 1334, 1997, 170–180 | Zbl

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004

[7] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, Fizmatlit, M., 2002, 91–148 | MR

[8] Zhang X. M., Zheng Y., “Characterizing the structures of cryptographic functions satisfying the propagation criterion for almost all vectors”, Design Codes Cryptography, 7:1–2 (1996), 111–134 | MR | Zbl