Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2011_1_a1, author = {N. G. Parvatov}, title = {Conditions for maximality of subclones}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {14--25}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a1/} }
N. G. Parvatov. Conditions for maximality of subclones. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 14-25. http://geodesic.mathdoc.fr/item/PDM_2011_1_a1/
[1] Maltsev A. I., “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika, 5:2 (1966), 5–24 | MR | Zbl
[2] Maltsev A. I., Iterativnye algebry Posta, Izd-vo NGU, Novosibirsk, 1976 | MR
[3] Geiger D., “Closed systems of functions and predicates”, Pacific journal of mathematics, 27 (1968), 95–100 | DOI | MR | Zbl
[4] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 | MR | Zbl
[5] Romov B. A., “O prodolzhenii ne vsyudu opredelënnykh funktsii”, Kibernetika, 1987, no. 3, 27–34 | MR | Zbl
[6] Kurosh A. G., Lektsii po obschei algebre, Lan, SPb., 2005
[7] Agibalov G. P., Diskretnye avtomaty na polureshëtkakh, Izd-vo Tom. un-ta, Tomsk, 1993 | Zbl
[8] Parvatov N. G., “Ob invariantakh nekotorykh klassov kvazimonotonnykh funktsii na polureshëtke”, Prikladnaya diskretnaya matematika, 2009, no. 4, 21–27
[9] Parvatov N. G., “Funktsionalnaya polnota v zamknutykh klassakh kvazimonotonnykh i monotonnykh trëkhznachnykh funktsii na polureshëtke”, Diskret. analiz i issled. operatsii. Ser. 1, 10:1 (2003), 61–78 | MR | Zbl
[10] Parvatov N. G., “Teorema o funktsionalnoi polnote v klasse kvazimonotonnykh funktsii na konechnoi polureshëtke”, Diskret. analiz i issled. operatsii. Ser. 1, 13:3 (2006), 62–82 | MR | Zbl