Conditions for maximality of subclones
Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 14-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is considered here: is a subclone of a clone maximal or not? To solve the problem, $\wedge$-descriptions and extended $\wedge$-descriptions being sets of predicates are proposed for characterizing subclones. Necessary and sufficient conditions are stated for extended $\wedge$-descriptions to characterize the maximal subclone.
Mots-clés : clon
Keywords: subclon, precompletely subclon, maximum subclon, completeness problem.
@article{PDM_2011_1_a1,
     author = {N. G. Parvatov},
     title = {Conditions for maximality of subclones},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--25},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a1/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - Conditions for maximality of subclones
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 14
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_1_a1/
LA  - ru
ID  - PDM_2011_1_a1
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T Conditions for maximality of subclones
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 14-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_1_a1/
%G ru
%F PDM_2011_1_a1
N. G. Parvatov. Conditions for maximality of subclones. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 14-25. http://geodesic.mathdoc.fr/item/PDM_2011_1_a1/

[1] Maltsev A. I., “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika, 5:2 (1966), 5–24 | MR | Zbl

[2] Maltsev A. I., Iterativnye algebry Posta, Izd-vo NGU, Novosibirsk, 1976 | MR

[3] Geiger D., “Closed systems of functions and predicates”, Pacific journal of mathematics, 27 (1968), 95–100 | DOI | MR | Zbl

[4] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 | MR | Zbl

[5] Romov B. A., “O prodolzhenii ne vsyudu opredelënnykh funktsii”, Kibernetika, 1987, no. 3, 27–34 | MR | Zbl

[6] Kurosh A. G., Lektsii po obschei algebre, Lan, SPb., 2005

[7] Agibalov G. P., Diskretnye avtomaty na polureshëtkakh, Izd-vo Tom. un-ta, Tomsk, 1993 | Zbl

[8] Parvatov N. G., “Ob invariantakh nekotorykh klassov kvazimonotonnykh funktsii na polureshëtke”, Prikladnaya diskretnaya matematika, 2009, no. 4, 21–27

[9] Parvatov N. G., “Funktsionalnaya polnota v zamknutykh klassakh kvazimonotonnykh i monotonnykh trëkhznachnykh funktsii na polureshëtke”, Diskret. analiz i issled. operatsii. Ser. 1, 10:1 (2003), 61–78 | MR | Zbl

[10] Parvatov N. G., “Teorema o funktsionalnoi polnote v klasse kvazimonotonnykh funktsii na konechnoi polureshëtke”, Diskret. analiz i issled. operatsii. Ser. 1, 13:3 (2006), 62–82 | MR | Zbl