Generating functions for sequences of disordered covers numbers
Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 5-13
This article considers generating functions for sequences of combinatorial numbers, which are the amounts of covers of a finite set by subsets of fixed cardinalities. The analysis of the generating functions is performed. Special cases of them are shown. The series of recurrence relations are obtained.
Keywords:
cover, finite set, combinatoric numbers, generating functions.
@article{PDM_2011_1_a0,
author = {R. M. Ganopolsky},
title = {Generating functions for sequences of disordered covers numbers},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--13},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a0/}
}
R. M. Ganopolsky. Generating functions for sequences of disordered covers numbers. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 5-13. http://geodesic.mathdoc.fr/item/PDM_2011_1_a0/
[1] Ganopolskii R. M., “Chislo neuporyadochennykh pokrytii konechnogo mnozhestva podmnozhestvami fiksirovannogo razmera”, Prikladnaya diskretnaya matematika, 2010, no. 4(10), 5–17
[2] Macula A. J., “Covers of a finite set”, Mathematics Magazine, 67:2 (1994), 141–144 | DOI | MR | Zbl
[3] Comtet L., Advanced Combinatorics. The Art of Finite and Infinate Expansions, D. Reidel Publishing Company, Dordrecht, Holland, 1974 | MR | Zbl
[4] Knut D., Grekhem F., Potashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 2006
[5] Lando S. K., Lektsii o proizvodyaschikh funktsiyakh, MTsNMO, M., 2002