Generating functions for sequences of disordered covers numbers
Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 5-13
Voir la notice de l'article provenant de la source Math-Net.Ru
This article considers generating functions for sequences of combinatorial numbers, which are the amounts of covers of a finite set by subsets of fixed cardinalities. The analysis of the generating functions is performed. Special cases of them are shown. The series of recurrence relations are obtained.
Keywords:
cover, finite set, combinatoric numbers, generating functions.
@article{PDM_2011_1_a0,
author = {R. M. Ganopolsky},
title = {Generating functions for sequences of disordered covers numbers},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--13},
publisher = {mathdoc},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a0/}
}
R. M. Ganopolsky. Generating functions for sequences of disordered covers numbers. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 5-13. http://geodesic.mathdoc.fr/item/PDM_2011_1_a0/