Algebras of languages associated with labelled graphs
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 20-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we introduce a family of algebras that may serve as an effective tool for characterization of languages, that can be represented by labelled graphs, and study its properties. It is proved that the language is represented by a regular expression in considered algebras if and only if this language is associated with the labelled graph. This result is an analog of well-known Kleene's theorem for finite automata.
@article{PDM_2011_13_a9,
     author = {E. A. Pryanichnikova},
     title = {Algebras of languages associated with labelled graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {20--21},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a9/}
}
TY  - JOUR
AU  - E. A. Pryanichnikova
TI  - Algebras of languages associated with labelled graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 20
EP  - 21
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a9/
LA  - ru
ID  - PDM_2011_13_a9
ER  - 
%0 Journal Article
%A E. A. Pryanichnikova
%T Algebras of languages associated with labelled graphs
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 20-21
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a9/
%G ru
%F PDM_2011_13_a9
E. A. Pryanichnikova. Algebras of languages associated with labelled graphs. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 20-21. http://geodesic.mathdoc.fr/item/PDM_2011_13_a9/

[1] Kapitonova Yu. V., Letichevskii A. A., Matematicheskaya teoriya proektirovaniya vychislitelnykh sistem, Nauka, M., 1988 | Zbl

[2] Anderson J., Automata Theory with Modern Applications, Cambridge University Press, Cambridge, 2006