On approximation of permutations by imprimitive groups
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 17-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss how to find the distance between a permutation and an imprimitive group having or not a fixed system of blocks.
@article{PDM_2011_13_a7,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On approximation of permutations by imprimitive groups},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {17--18},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a7/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On approximation of permutations by imprimitive groups
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 17
EP  - 18
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a7/
LA  - ru
ID  - PDM_2011_13_a7
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On approximation of permutations by imprimitive groups
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 17-18
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a7/
%G ru
%F PDM_2011_13_a7
B. A. Pogorelov; M. A. Pudovkina. On approximation of permutations by imprimitive groups. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 17-18. http://geodesic.mathdoc.fr/item/PDM_2011_13_a7/