The improvement of exponent's estimates for primitive graphs
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 98-100
Cet article a éte moissonné depuis la source Math-Net.Ru
The estimates of exponents of $n$-vertex primitive digraphs are improved. The digraphs considered contain two prime contours whose lengths $l$ and $\lambda$ are coprime numbers. Accessible estimates of the order $O(\max\{l\lambda,f(l,\lambda,n)\})$ are obtained, where $f(l,\lambda,n)$ is a linear polynomial. Primitive digraphs whose exponents are maximal ($n^2-2n+2$, H. Wielandt, 1950), are described completely. The estimates of exponents of $n$-vertex primitive undirected graphs are improved too. In particular, the exponent of an undirected graph is no more $2n-l-1$ where $l$ is the length of the longest cycle with odd length in graph. Primitive undirected graphs whose exponents are maximal ($2n-2$) are described completely.
@article{PDM_2011_13_a50,
author = {V. M. Fomichev},
title = {The improvement of exponent's estimates for primitive graphs},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {98--100},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a50/}
}
V. M. Fomichev. The improvement of exponent's estimates for primitive graphs. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 98-100. http://geodesic.mathdoc.fr/item/PDM_2011_13_a50/
[2] Birkgof G., Teoriya reshëtok, Nauka, M., 1984
[3] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | Zbl
[4] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 | DOI | MR | Zbl
[5] Fomichëv V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2, 101–112