Restrictions on girths in compact graphs
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 96-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

By definition, the compact graph is a regular graph with the minimum diameter. In the paper, the compactness conditions are investigated for regular graphs with the length of a minimum cycle restricted.
@article{PDM_2011_13_a49,
     author = {V. A. Melent'ev},
     title = {Restrictions on girths in compact graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {96--98},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a49/}
}
TY  - JOUR
AU  - V. A. Melent'ev
TI  - Restrictions on girths in compact graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 96
EP  - 98
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a49/
LA  - ru
ID  - PDM_2011_13_a49
ER  - 
%0 Journal Article
%A V. A. Melent'ev
%T Restrictions on girths in compact graphs
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 96-98
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a49/
%G ru
%F PDM_2011_13_a49
V. A. Melent'ev. Restrictions on girths in compact graphs. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 96-98. http://geodesic.mathdoc.fr/item/PDM_2011_13_a49/

[1] Melentev V. A., “Kompaktnye struktury vychislitelnykh sistem i ikh sintez”, Upravlenie bolshimi sistemami., 32, 2011, 241–261

[2] Melentev V. A., “Analiticheskii podkhod k sintezu regulyarnykh grafov s zadannymi znacheniyami poryadka, stepeni i obkhvata”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 74–86