On congruences of paths
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 91-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

A congruence of a path is an equivalence relation on the set of path's vertices all of whose classes are independent subsets. It is shown that each connected graph is a quotient-graph of a suitable path. Valuations are established for a minimal length of a chain whose quotient-graph is a given graph.
@article{PDM_2011_13_a46,
     author = {E. O. Karmanova},
     title = {On congruences of paths},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {91--92},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a46/}
}
TY  - JOUR
AU  - E. O. Karmanova
TI  - On congruences of paths
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 91
EP  - 92
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a46/
LA  - ru
ID  - PDM_2011_13_a46
ER  - 
%0 Journal Article
%A E. O. Karmanova
%T On congruences of paths
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 91-92
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a46/
%G ru
%F PDM_2011_13_a46
E. O. Karmanova. On congruences of paths. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 91-92. http://geodesic.mathdoc.fr/item/PDM_2011_13_a46/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997, 367 pp. | Zbl

[2] Salii V. N., “Optimalnye rekonstruktsii grafov”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, Izd-vo Sarat. un-ta, Saratov, 2008, 59–65

[3] Karmanova E. O., “O kongruentsiyakh tsepei i tsiklov”, Kompyuternye nauki i informatsionnye tekhnologii, Izd-vo Sarat. un-ta, Saratov, 2009, 238

[4] Karmanova E. O., “O kongruentsiyakh tsepei”, Prikladnaya diskretnaya matematika, 2011, no. 2, 96–100