On congruences of paths
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 91-92
A congruence of a path is an equivalence relation on the set of path's vertices all of whose classes are independent subsets. It is shown that each connected graph is a quotient-graph of a suitable path. Valuations are established for a minimal length of a chain whose quotient-graph is a given graph.
@article{PDM_2011_13_a46,
author = {E. O. Karmanova},
title = {On congruences of paths},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {91--92},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a46/}
}
E. O. Karmanova. On congruences of paths. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 91-92. http://geodesic.mathdoc.fr/item/PDM_2011_13_a46/
[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997, 367 pp. | Zbl
[2] Salii V. N., “Optimalnye rekonstruktsii grafov”, Sovremennye problemy differentsialnoi geometrii i obschei algebry, Izd-vo Sarat. un-ta, Saratov, 2008, 59–65
[3] Karmanova E. O., “O kongruentsiyakh tsepei i tsiklov”, Kompyuternye nauki i informatsionnye tekhnologii, Izd-vo Sarat. un-ta, Saratov, 2009, 238
[4] Karmanova E. O., “O kongruentsiyakh tsepei”, Prikladnaya diskretnaya matematika, 2011, no. 2, 96–100