On attractors of dynamical systems associated with cycles
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 88-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem that describes attractors of dynamical systems associated with cycles is proved. States of such a system are binary vectors of a given dimension and evolutional function transforms vectors according to the following rules: if both the initial component is 0 and the final one is 1 they are replaced by 1 and 0 respectively and all digrams 10 are replaced simultaneously by 01.
@article{PDM_2011_13_a44,
     author = {A. V. Vlasova},
     title = {On attractors of dynamical systems associated with cycles},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {88--89},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a44/}
}
TY  - JOUR
AU  - A. V. Vlasova
TI  - On attractors of dynamical systems associated with cycles
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 88
EP  - 89
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a44/
LA  - ru
ID  - PDM_2011_13_a44
ER  - 
%0 Journal Article
%A A. V. Vlasova
%T On attractors of dynamical systems associated with cycles
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 88-89
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a44/
%G ru
%F PDM_2011_13_a44
A. V. Vlasova. On attractors of dynamical systems associated with cycles. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 88-89. http://geodesic.mathdoc.fr/item/PDM_2011_13_a44/

[1] Vlasova A. V., “Vetvleniya v konechnoi dinamicheskoi sisteme ($B^n$, $\theta$)”, Nauchnye issledovaniya studentov Saratovskogo gosudarstvennogo universiteta, Materialy itog. stud. nauch. konf., Izd-vo Sarat. un-ta, Saratov, 2008, 57–58

[2] Vlasova A. V., Issledovanie evolyutsionnykh parametrov v dinamicheskikh sistemakh dvoichnykh vektorov, Svidetelstvo ROSPATENTa No 2009614409, zaregistrirovano 20 avgusta 2009

[3] Barbosa V. C., An atlas of edge-reversal dynamics, Chapman Hall/CRC, London, 2001, 372 pp. | Zbl

[4] Colon-Reyes O., Laubenbacher R., Pareigis B., “Boolean monomial dynamical systems”, Ann. Combinat., 8 (2004), 425–439 | DOI | MR | Zbl

[5] Vlasova A. V., “Attraktory dinamicheskikh sistem, assotsiirovannykh s tsiklami”, Prikladnaya diskretnaya matematika, 2011, no. 2, 90–95