Computational aspects of treewidth for graph
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 85-87

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief overview of recent results on the problem of treewidth for the graph is givev; some of the lower and upper bounds for treewidth are investigated; algorithmic methods to improve these bounds are presented.
@article{PDM_2011_13_a43,
     author = {V. V. Bykova},
     title = {Computational aspects of treewidth for graph},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {85--87},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a43/}
}
TY  - JOUR
AU  - V. V. Bykova
TI  - Computational aspects of treewidth for graph
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 85
EP  - 87
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a43/
LA  - ru
ID  - PDM_2011_13_a43
ER  - 
%0 Journal Article
%A V. V. Bykova
%T Computational aspects of treewidth for graph
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 85-87
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a43/
%G ru
%F PDM_2011_13_a43
V. V. Bykova. Computational aspects of treewidth for graph. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 85-87. http://geodesic.mathdoc.fr/item/PDM_2011_13_a43/