On minimal edge 1-extensions of two special form trees
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 83-84
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider two families of trees: one family consists of superslim trees and another one of trees that are a combination of star graphs with adjacent centers. For these families, we propose schemes for constructing one minimal edge-1-extensions.
@article{PDM_2011_13_a41,
author = {M. B. Abrosimov and D. D. Komarov},
title = {On minimal edge 1-extensions of two special form trees},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {83--84},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a41/}
}
M. B. Abrosimov; D. D. Komarov. On minimal edge 1-extensions of two special form trees. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 83-84. http://geodesic.mathdoc.fr/item/PDM_2011_13_a41/
[1] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650
[2] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[3] Abrosimov M. B., “Minimalnye rasshireniya neorientirovannykh zvezd”, Teoreticheskie problemy informatiki i ee prilozhenii, 7, Saratov, 2006, 3–5
[4] Abrosimov M. B., Komarov D. D., Minimalnye rebernye rasshireniya sverkhstroinykh derevev s malym chislom vershin, Dep. v VINITI 18.10.2010 No 589–V, Saratov. gos. un-t, Saratov, 2010, 27 pp.
[5] Kabanov M. A., “Ob otkazoustoichivykh realizatsiyakh grafov”, Teoreticheskie zadachi informatiki i ee prilozhenii, 1, Saratov, 1997, 50–58