Minimal extensions for cycles with vertices of two types
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 80-81
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For cycles with vertices of two types where one vertex is of the first type and other vertices are of another type, the minimal vertex extensions are described.
@article{PDM_2011_13_a39,
     author = {M. B. Abrosimov and P. P. Bondarenko},
     title = {Minimal extensions for cycles with vertices of two types},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {80--81},
     year = {2011},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - P. P. Bondarenko
TI  - Minimal extensions for cycles with vertices of two types
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 80
EP  - 81
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/
LA  - ru
ID  - PDM_2011_13_a39
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A P. P. Bondarenko
%T Minimal extensions for cycles with vertices of two types
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 80-81
%N 13
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/
%G ru
%F PDM_2011_13_a39
M. B. Abrosimov; P. P. Bondarenko. Minimal extensions for cycles with vertices of two types. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 80-81. http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/

[1] Abrosimov M. B., “Minimalnye $k$-rasshireniya predpolnykh grafov”, Izv. vuzov. Matematika, 2003, no. 6(493), 3–11 | MR | Zbl

[2] Heyes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI