Minimal extensions for cycles with vertices of two types
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 80-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

For cycles with vertices of two types where one vertex is of the first type and other vertices are of another type, the minimal vertex extensions are described.
@article{PDM_2011_13_a39,
     author = {M. B. Abrosimov and P. P. Bondarenko},
     title = {Minimal extensions for cycles with vertices of two types},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {80--81},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - P. P. Bondarenko
TI  - Minimal extensions for cycles with vertices of two types
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 80
EP  - 81
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/
LA  - ru
ID  - PDM_2011_13_a39
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A P. P. Bondarenko
%T Minimal extensions for cycles with vertices of two types
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 80-81
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/
%G ru
%F PDM_2011_13_a39
M. B. Abrosimov; P. P. Bondarenko. Minimal extensions for cycles with vertices of two types. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 80-81. http://geodesic.mathdoc.fr/item/PDM_2011_13_a39/

[1] Abrosimov M. B., “Minimalnye $k$-rasshireniya predpolnykh grafov”, Izv. vuzov. Matematika, 2003, no. 6(493), 3–11 | MR | Zbl

[2] Heyes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI