On skeleton automata
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 76-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A skeleton automaton is an automaton in which the relation of mutual accessibility of states is the identity relation. We prove that automata that admit a regular enumeration of states are exactly skeleton automata. It is shown how for a given automaton one can construct an automaton with minimal number of states that has the same subautomata lattice, and is necessarily a skeleton automaton. A procedure is proposed to obtain a skeleton automaton from a given automaton by removal of minimal number of arcs in its transition diagram.
@article{PDM_2011_13_a37,
     author = {V. N. Salii},
     title = {On skeleton automata},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {76--78},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a37/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - On skeleton automata
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 76
EP  - 78
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a37/
LA  - ru
ID  - PDM_2011_13_a37
ER  - 
%0 Journal Article
%A V. N. Salii
%T On skeleton automata
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 76-78
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a37/
%G ru
%F PDM_2011_13_a37
V. N. Salii. On skeleton automata. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 76-78. http://geodesic.mathdoc.fr/item/PDM_2011_13_a37/

[1] Salii V. N., “Karkas avtomata”, Prikladnaya diskretnaya matematika, 2010, no. 1(7), 63–67

[2] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | Zbl

[3] Salii V. N., “Skeletnye avtomaty”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 73–76