On skeleton automata
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 76-78
A skeleton automaton is an automaton in which the relation of mutual accessibility of states is the identity relation. We prove that automata that admit a regular enumeration of states are exactly skeleton automata. It is shown how for a given automaton one can construct an automaton with minimal number of states that has the same subautomata lattice, and is necessarily a skeleton automaton. A procedure is proposed to obtain a skeleton automaton from a given automaton by removal of minimal number of arcs in its transition diagram.
@article{PDM_2011_13_a37,
author = {V. N. Salii},
title = {On skeleton automata},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {76--78},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a37/}
}
V. N. Salii. On skeleton automata. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 76-78. http://geodesic.mathdoc.fr/item/PDM_2011_13_a37/
[1] Salii V. N., “Karkas avtomata”, Prikladnaya diskretnaya matematika, 2010, no. 1(7), 63–67
[2] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | Zbl
[3] Salii V. N., “Skeletnye avtomaty”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 73–76