The number of bent functions on the minimal distance from a~quadratic bent function
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 9-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We are interested in how to construct bent functions by slight modifications of an initial one. The answer to this question is directly connected with the studying bent functions on the minimal Hamming distance from a given bent function. Here, we describe all bent functions on the minimal distance from a quadratic bent function and calculate exactly the number of them.
@article{PDM_2011_13_a2,
     author = {N. A. Kolomee{\cyrs}},
     title = {The number of bent functions on the minimal distance from a~quadratic bent function},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {9--11},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a2/}
}
TY  - JOUR
AU  - N. A. Kolomeeс
TI  - The number of bent functions on the minimal distance from a~quadratic bent function
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 9
EP  - 11
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a2/
LA  - ru
ID  - PDM_2011_13_a2
ER  - 
%0 Journal Article
%A N. A. Kolomeeс
%T The number of bent functions on the minimal distance from a~quadratic bent function
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 9-11
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a2/
%G ru
%F PDM_2011_13_a2
N. A. Kolomeeс. The number of bent functions on the minimal distance from a~quadratic bent function. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 9-11. http://geodesic.mathdoc.fr/item/PDM_2011_13_a2/

[1] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–21