Discrete logarithm diophantiness
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 31-32
The paper proposes a new representation of discrete logarithm in $Z_p$ by constructing a diophantine equation, such that finding solution to this equation and finding discrete logarithm are equivalent problems.
@article{PDM_2011_13_a15,
author = {S. Y. Erofeev},
title = {Discrete logarithm diophantiness},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {31--32},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a15/}
}
S. Y. Erofeev. Discrete logarithm diophantiness. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 31-32. http://geodesic.mathdoc.fr/item/PDM_2011_13_a15/
[1] Matiyasevich Yu. V., “Diofantovost perechislimykh mnozhestv”, Dokl. AN SSSR, 191:2 (1970), 279–282 | Zbl
[2] Matiyasevich Yu. V., “Diofantovo predstavlenie perechislimykh predikatov”, Izv. AN SSSR. Ser. matemat., 35:1 (1971), 3–30 | MR | Zbl
[3] Davis M., “Hilbert's Tenth Problem is Unsolvable”, Amer. Math. Monthly, 80:3 (1973), 233–270 | DOI | MR