Algebraic cryptanalysis of one-round S-AES
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 29-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate applicability of the algebraic cryptanalysis to S-AES. We use 2 different pairs of plaintexts and ciphertexts that allow us to obtain the system with only 32 equations and 16 variables. We analyse the efficiency of such an approach.
@article{PDM_2011_13_a14,
     author = {R. I. Voronin},
     title = {Algebraic cryptanalysis of one-round {S-AES}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {29--31},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a14/}
}
TY  - JOUR
AU  - R. I. Voronin
TI  - Algebraic cryptanalysis of one-round S-AES
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 29
EP  - 31
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a14/
LA  - ru
ID  - PDM_2011_13_a14
ER  - 
%0 Journal Article
%A R. I. Voronin
%T Algebraic cryptanalysis of one-round S-AES
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 29-31
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a14/
%G ru
%F PDM_2011_13_a14
R. I. Voronin. Algebraic cryptanalysis of one-round S-AES. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 29-31. http://geodesic.mathdoc.fr/item/PDM_2011_13_a14/

[1] Courtois N., Pieprzyk J., “Cryptanalysis of Block Ciphers with Overdefined Systems of Equations”, LNCS, 2501, 2002, 267–287 | MR | Zbl

[2] Mohammad M., Edward S., Stephen W., “A simplified AES algorithm and its linear and differential cryptanalyses”, Cryptologia, 27 (2003), 148–177 | DOI | MR

[3] Kleiman E., The XL and XSL attacks on Baby Rijndael, Ms. Thesis, Iowa SU, USA, 2005

[4] Babenko L. K., Maro E. A., “Algebraicheskii analiz uproschennogo algoritma shifrovaniya Rijndael”, Izvestiya YuFU. Tekhnicheskie nauki (Taganrog), 2009, no. 11(100), Tematicheskii vypusk “Informatsionnaya bezopasnost”, 187–199