Provable secure dynamic group signature scheme
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 27-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the modification of basic group signature scheme BBS for the purpose of its application for distributed systems with variable structure. The mechanism of classification and comparison for group signatures is proposed. The BBS scheme is improved according to the requirements of application area. Security of new group signature scheme is proved.
@article{PDM_2011_13_a13,
     author = {A. V. Artamonov and P. N. Vasilev and E. B Makhovenko},
     title = {Provable secure dynamic group signature scheme},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {27--29},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a13/}
}
TY  - JOUR
AU  - A. V. Artamonov
AU  - P. N. Vasilev
AU  - E. B Makhovenko
TI  - Provable secure dynamic group signature scheme
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 27
EP  - 29
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a13/
LA  - ru
ID  - PDM_2011_13_a13
ER  - 
%0 Journal Article
%A A. V. Artamonov
%A P. N. Vasilev
%A E. B Makhovenko
%T Provable secure dynamic group signature scheme
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 27-29
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a13/
%G ru
%F PDM_2011_13_a13
A. V. Artamonov; P. N. Vasilev; E. B Makhovenko. Provable secure dynamic group signature scheme. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 27-29. http://geodesic.mathdoc.fr/item/PDM_2011_13_a13/

[1] Vasilev P. N., Artamonov A. V., Makhovenko E. B., “Klassifikatsionnaya skhema gruppovykh podpisei dlya postroeniya raspredelennykh prilozhenii”, Nauchno-tekhnicheskie vedomosti SPbGPU, Izd-vo Politekhnicheskogo universiteta, SPb., 2010, 71–77

[2] Shacham H., New paradigms in signature schemes, 2005 http:hovav.net/dist/thesis.pdf

[3] Delerablee C., Pointcheval D., “Dynamic fully anonymous short group signatures”, LNCS, 4341, 2006, 193–210

[4] Bellare M., Shi H., Zang C., “Foundations of group signatures: the case of dynamic groups”, LNCS, 3376, 2005, 136–153 | MR | Zbl

[5] Shacham H., A Cramer–Shoup encryption scheme from the linear assumption and from progressively weaker linear variants http://eprint.iacr.org/2007/074.pdf