Mapping enlargements preserving identification property
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 26-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mappings defined on a Cartesian power of a finite set with the property to be identified on a subset of co-domain coordinates are considered. A mapping enlargement preserving the identification property is suggested. In the secret sharing schemes based on involutions, the result can be applied to specify authorized subsets when a new patticipant is added.
@article{PDM_2011_13_a12,
     author = {L. N. Andreeva},
     title = {Mapping enlargements preserving  identification  property},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {26--27},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a12/}
}
TY  - JOUR
AU  - L. N. Andreeva
TI  - Mapping enlargements preserving  identification  property
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 26
EP  - 27
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a12/
LA  - ru
ID  - PDM_2011_13_a12
ER  - 
%0 Journal Article
%A L. N. Andreeva
%T Mapping enlargements preserving  identification  property
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 26-27
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a12/
%G ru
%F PDM_2011_13_a12
L. N. Andreeva. Mapping enlargements preserving  identification  property. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 26-27. http://geodesic.mathdoc.fr/item/PDM_2011_13_a12/

[1] Andreeva L. N., “Involyutsionnye skhemy razdeleniya sekreta”, Vestnik Tomskogo gosuniversiteta, 2007, Prilozhenie No 23, 99

[2] Andreeva L. N., “K kriptoanalizu shifrov involyutsitsionnoi podstanovki”, Vestnik Tomskogo gosuniversiteta, 2005, Prilozhenie No 14, 43–44

[3] Andreeva L. N., “K kriptoanalizu involyutivnykh shifrov s chastichno izvestnymi involyutsiyami”, Vestnik Tomskogo gosuniversiteta, 2006, Prilozhenie No 17, 109–112