Polynomials over primary residue rings with a small unique distance
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 24-25
We consider polynomials over small residue rings. For polynomials with the unique distance equaled to twice the degree of the polynomial, we show how to use them for constructing cryptographic primitives.
@article{PDM_2011_13_a11,
author = {A. V. Abornev and D. N. Bylkov},
title = {Polynomials over primary residue rings with a~small unique distance},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {24--25},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/}
}
A. V. Abornev; D. N. Bylkov. Polynomials over primary residue rings with a small unique distance. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 24-25. http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/
[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear Recurring Sequences over Rings and Modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[2] Bylkov D. N., “Rasstoyanie edinstvennosti semeistva koordinatnykh posledovatelnostei, poluchennykh uslozhneniem lineinykh rekurrent nad koltsom Galua”, Prikladnaya diskretnaya matematika, 2008, no. 2, 5–7