Polynomials over primary residue rings with a~small unique distance
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 24-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider polynomials over small residue rings. For polynomials with the unique distance equaled to twice the degree of the polynomial, we show how to use them for constructing cryptographic primitives.
@article{PDM_2011_13_a11,
     author = {A. V. Abornev and D. N. Bylkov},
     title = {Polynomials over primary residue rings with a~small unique distance},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {24--25},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/}
}
TY  - JOUR
AU  - A. V. Abornev
AU  - D. N. Bylkov
TI  - Polynomials over primary residue rings with a~small unique distance
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 24
EP  - 25
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/
LA  - ru
ID  - PDM_2011_13_a11
ER  - 
%0 Journal Article
%A A. V. Abornev
%A D. N. Bylkov
%T Polynomials over primary residue rings with a~small unique distance
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 24-25
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/
%G ru
%F PDM_2011_13_a11
A. V. Abornev; D. N. Bylkov. Polynomials over primary residue rings with a~small unique distance. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 24-25. http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/

[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear Recurring Sequences over Rings and Modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[2] Bylkov D. N., “Rasstoyanie edinstvennosti semeistva koordinatnykh posledovatelnostei, poluchennykh uslozhneniem lineinykh rekurrent nad koltsom Galua”, Prikladnaya diskretnaya matematika, 2008, no. 2, 5–7