Polynomials over primary residue rings with a small unique distance
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 24-25
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider polynomials over small residue rings. For polynomials with the unique distance equaled to twice the degree of the polynomial, we show how to use them for constructing cryptographic primitives.
@article{PDM_2011_13_a11,
     author = {A. V. Abornev and D. N. Bylkov},
     title = {Polynomials over primary residue rings with a~small unique distance},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {24--25},
     year = {2011},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/}
}
TY  - JOUR
AU  - A. V. Abornev
AU  - D. N. Bylkov
TI  - Polynomials over primary residue rings with a small unique distance
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 24
EP  - 25
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/
LA  - ru
ID  - PDM_2011_13_a11
ER  - 
%0 Journal Article
%A A. V. Abornev
%A D. N. Bylkov
%T Polynomials over primary residue rings with a small unique distance
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 24-25
%N 13
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/
%G ru
%F PDM_2011_13_a11
A. V. Abornev; D. N. Bylkov. Polynomials over primary residue rings with a small unique distance. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 24-25. http://geodesic.mathdoc.fr/item/PDM_2011_13_a11/

[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear Recurring Sequences over Rings and Modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[2] Bylkov D. N., “Rasstoyanie edinstvennosti semeistva koordinatnykh posledovatelnostei, poluchennykh uslozhneniem lineinykh rekurrent nad koltsom Galua”, Prikladnaya diskretnaya matematika, 2008, no. 2, 5–7