Hypotheses for the number of bent functions
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 21-23
We study bent iterative functions and their applications for the long-standing problem to find exact number of all bent functions.
@article{PDM_2011_13_a10,
author = {N. N. Tokareva},
title = {Hypotheses for the number of bent functions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {21--23},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a10/}
}
N. N. Tokareva. Hypotheses for the number of bent functions. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 21-23. http://geodesic.mathdoc.fr/item/PDM_2011_13_a10/
[1] Canteaut A., Charpin P., “Decomposing Bent Functions”, IEEE Trans. Inform. Theory, 49 (2003), 2004–2019 | DOI | MR | Zbl
[2] Tokareva N. N., “Novaya kombinatornaya konstruktsiya bent-funktsii”, Prikladnaya diskretnaya matematika, 2010, Prilozhenie No 3, 13–14
[3] Tokareva N., On the number of bent functions: lower bounds and hypotheses, Crypto Archive 2011, Report 2011/083 . http://eprint.iacr.org/2011/083.pdf