A family of exact 2-extensions of tournaments
Prikladnaâ diskretnaâ matematika, no. 3 (2010), pp. 96-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The family of tournaments which have exact 1- and 2-extensions but haven't exact 3-extension is introduced. It is the only known family of graphs with such a property, and it is the fourth family of graphs which have exact $k$-extension for $k>1$.
Keywords: graph, exact $k$-extension
Mots-clés : circulant.
@article{PDM_2010_3_a8,
     author = {A. A. Dolgov},
     title = {A family of exact 2-extensions of tournaments},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {96--99},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_3_a8/}
}
TY  - JOUR
AU  - A. A. Dolgov
TI  - A family of exact 2-extensions of tournaments
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 96
EP  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_3_a8/
LA  - ru
ID  - PDM_2010_3_a8
ER  - 
%0 Journal Article
%A A. A. Dolgov
%T A family of exact 2-extensions of tournaments
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 96-99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_3_a8/
%G ru
%F PDM_2010_3_a8
A. A. Dolgov. A family of exact 2-extensions of tournaments. Prikladnaâ diskretnaâ matematika, no. 3 (2010), pp. 96-99. http://geodesic.mathdoc.fr/item/PDM_2010_3_a8/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR | Zbl

[2] Abrosimov M. B., “Minimalnye rasshireniya dopolnenii grafov”, Teoreticheskie zadachi informatiki i ee prilozhenii, 4, SGU, Saratov, 2001, 11–19

[3] Abrosimov M. B., “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestnik Tomskogo gosuniversiteta, 2006, Prilozhenie No 17, 187–190

[4] Abrosimov M. B., Dolgov A. A., “Semeistva tochnykh rasshirenii turnirov”, Prikladnaya diskretnaya matematika, 2008, no. 1, 101–107

[5] Eplett W. J. R., “Self-converse tournaments”, Canadian Mathematical Bulletin, 22 (1979), 23–27 | MR | Zbl

[6] Morris J., “Automorphism groups of circulant graphs – a survey”, Graph Theory, Trends in Math., 2006, 311–325 | MR