On values of affinity level for almost all Boolean functions
Prikladnaâ diskretnaâ matematika, no. 3 (2010), pp. 17-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In the current paper, we consider asymptotic form of values of one parameter of Boolean functions, namely affinity level (generalized affinity level). We prove that asymptotically (with $n\to\infty$) values of affinity level (generalized affinity level) for almost all Boolean functions are all in the segment $[n-\log_2n,n-\log_2n+1]$.
Keywords: affinity level, generalized affinity level, Boolean equations, cryptography.
@article{PDM_2010_3_a1,
     author = {O. A. Logachev},
     title = {On values of affinity level for almost all {Boolean} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {17--21},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_3_a1/}
}
TY  - JOUR
AU  - O. A. Logachev
TI  - On values of affinity level for almost all Boolean functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 17
EP  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_3_a1/
LA  - ru
ID  - PDM_2010_3_a1
ER  - 
%0 Journal Article
%A O. A. Logachev
%T On values of affinity level for almost all Boolean functions
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 17-21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_3_a1/
%G ru
%F PDM_2010_3_a1
O. A. Logachev. On values of affinity level for almost all Boolean functions. Prikladnaâ diskretnaâ matematika, no. 3 (2010), pp. 17-21. http://geodesic.mathdoc.fr/item/PDM_2010_3_a1/