Frame of an automaton
Prikladnaâ diskretnaâ matematika, no. 1 (2010), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The frame of an automaton is the partially ordered set of its strongly connected subsets together with the relation of inverse attainability. Some properties of frames are established related to basic algebraic constructions such as subautomata, homomorphisms, and congruences.
Keywords: automaton, frame of an automaton, subautomaton, congruence, ordered set.
Mots-clés : homomorphism
@article{PDM_2010_1_a4,
     author = {V. N. Salii},
     title = {Frame of an automaton},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_1_a4/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - Frame of an automaton
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 63
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_1_a4/
LA  - ru
ID  - PDM_2010_1_a4
ER  - 
%0 Journal Article
%A V. N. Salii
%T Frame of an automaton
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 63-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_1_a4/
%G ru
%F PDM_2010_1_a4
V. N. Salii. Frame of an automaton. Prikladnaâ diskretnaâ matematika, no. 1 (2010), pp. 63-67. http://geodesic.mathdoc.fr/item/PDM_2010_1_a4/

[1] Salii V. N., “Avtomaty, u kotorykh vse kongruentsii – vnutrennie”, Izv. vuzov. Matematika, 2009, no. 9, 36–45 | Zbl

[2] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR | Zbl