Classes of graphs reconstructed with
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 99-101
A graph exploration problem is considered by means of an agent which moves on graph edges, coloures the marks on it's nodes and its incidentors. The agent reconstructs a graph which is isomorphic to the recognized one by using information about marks on graph nodes and incidentors. A proposed recognition methods have quadratic and cubic complexity and need no more then four different marks. Classes of graphs with linear complexity of recognition are found. For them some operations on graphs preserving the linear complexity of recognition are defined.
@article{PDM_2010_12_a51,
author = {E. A. Tatarinov},
title = {Classes of graphs reconstructed with},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {99--101},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a51/}
}
E. A. Tatarinov. Classes of graphs reconstructed with. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 99-101. http://geodesic.mathdoc.fr/item/PDM_2010_12_a51/
[1] Dudek G., Jenkin M., Computational principles of mobile robotic, Cambridge Univ. Press, 2000 | Zbl
[2] Grunskii I. S., Tatarinov E. A., “Raspoznavanie konechnogo grafa bluzhdayuschim po nemu agentom”, Vestnik Donetskogo universiteta. Ser. A. Estestvennye nauki, 2009, no. 1, 492–497 | MR
[3] Grunskii I. S., Tatarinov E. A., “Algoritm raspoznavaniya grafov”, Trudy Chetvertoi Mezhdunar. konf. “Parallelnye vychisleniya i zadachi upravleniya”, PACO' 2008, Institut problem upravleniya im. V. A. Trapeznikova RAN, M., 2008, 1483–1498
[4] Kasyanov V. N., Evstigneev V. A., Grafy v programmirovanii, vizualizatsiya i primenenie, Peterburg, SPb., 2003