Elasticity of algorithms
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 76-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the characterization of elasticity for rapid, polynomial, subexponential, exponential and hyperexponential algorithms and give a method for comparing algorithms by their elasticity.
@article{PDM_2010_12_a36,
     author = {V. V. Bykova},
     title = {Elasticity of algorithms},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {76--78},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a36/}
}
TY  - JOUR
AU  - V. V. Bykova
TI  - Elasticity of algorithms
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 76
EP  - 78
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a36/
LA  - ru
ID  - PDM_2010_12_a36
ER  - 
%0 Journal Article
%A V. V. Bykova
%T Elasticity of algorithms
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 76-78
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a36/
%G ru
%F PDM_2010_12_a36
V. V. Bykova. Elasticity of algorithms. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 76-78. http://geodesic.mathdoc.fr/item/PDM_2010_12_a36/

[1] Yudin D. B., Matematiki izmeryayut slozhnost, Knizhnyi dom “Librokom”, M., 2009, 192 pp.

[2] Bykova V. V., “Matematicheskie metody analiza rekursivnykh algoritmov”, Zhurnal SFU. Matematika i fizika, 1:3 (2008), 236–246

[3] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 336 pp.

[4] Bykova V. V., “Metod raspoznavaniya klassov algoritmov na osnove asimptotiki elastichnosti funktsii slozhnosti”, Zhurnal SFU. Matematika i fizika, 2:1 (2009), 48–62