Elasticity of algorithms
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 76-78
Cet article a éte moissonné depuis la source Math-Net.Ru
We present the characterization of elasticity for rapid, polynomial, subexponential, exponential and hyperexponential algorithms and give a method for comparing algorithms by their elasticity.
@article{PDM_2010_12_a36,
author = {V. V. Bykova},
title = {Elasticity of algorithms},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {76--78},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a36/}
}
V. V. Bykova. Elasticity of algorithms. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 76-78. http://geodesic.mathdoc.fr/item/PDM_2010_12_a36/
[1] Yudin D. B., Matematiki izmeryayut slozhnost, Knizhnyi dom “Librokom”, M., 2009, 192 pp.
[2] Bykova V. V., “Matematicheskie metody analiza rekursivnykh algoritmov”, Zhurnal SFU. Matematika i fizika, 1:3 (2008), 236–246
[3] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 336 pp.
[4] Bykova V. V., “Metod raspoznavaniya klassov algoritmov na osnove asimptotiki elastichnosti funktsii slozhnosti”, Zhurnal SFU. Matematika i fizika, 2:1 (2009), 48–62