About one family of exact 2-extensions of tournaments
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 72-73
Cet article a éte moissonné depuis la source Math-Net.Ru
Exact extensions were introduced by Harary and Hayes in 1996. Exact extensions are special case of minimal extensions of graphs and closely related to fault tolerance modeling. Only three families of graphs wich have exact $k$-extensions for every $k>0$ are known. In this paper we introduce new family of tournaments that have exact 1- and 2-extensions, but have no 3-extension.
@article{PDM_2010_12_a34,
author = {A. A. Dolgov},
title = {About one family of exact 2-extensions of tournaments},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {72--73},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a34/}
}
A. A. Dolgov. About one family of exact 2-extensions of tournaments. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 72-73. http://geodesic.mathdoc.fr/item/PDM_2010_12_a34/
[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR | Zbl
[2] Abrosimov M. B., “Minimalnye rasshireniya dopolnenii grafov”, Teoreticheskie zadachi informatiki i ee prilozhenii, 4, SGU, Saratov, 2001, 11–19
[3] Abrosimov M. B., “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestnik Tomskogo gosuniversiteta, 2006, Prilozhenie No 17, 187–190
[4] Abrosimov M. B., Dolgov A. A., “Semeistva tochnykh rasshirenii turnirov”, Prikladnaya diskretnaya matematika, 2008, no. 1, 101–107
[5] Eplett W. J. R., “Self-converse tournaments”, Canadian Mathematical Bulletin, 22 (1979), 23–27 | MR | Zbl