About one family of exact 2-extensions of tournaments
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 72-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact extensions were introduced by Harary and Hayes in 1996. Exact extensions are special case of minimal extensions of graphs and closely related to fault tolerance modeling. Only three families of graphs wich have exact $k$-extensions for every $k>0$ are known. In this paper we introduce new family of tournaments that have exact 1- and 2-extensions, but have no 3-extension.
@article{PDM_2010_12_a34,
     author = {A. A. Dolgov},
     title = {About one family of exact 2-extensions of tournaments},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {72--73},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a34/}
}
TY  - JOUR
AU  - A. A. Dolgov
TI  - About one family of exact 2-extensions of tournaments
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 72
EP  - 73
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a34/
LA  - ru
ID  - PDM_2010_12_a34
ER  - 
%0 Journal Article
%A A. A. Dolgov
%T About one family of exact 2-extensions of tournaments
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 72-73
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a34/
%G ru
%F PDM_2010_12_a34
A. A. Dolgov. About one family of exact 2-extensions of tournaments. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 72-73. http://geodesic.mathdoc.fr/item/PDM_2010_12_a34/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR | Zbl

[2] Abrosimov M. B., “Minimalnye rasshireniya dopolnenii grafov”, Teoreticheskie zadachi informatiki i ee prilozhenii, 4, SGU, Saratov, 2001, 11–19

[3] Abrosimov M. B., “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestnik Tomskogo gosuniversiteta, 2006, Prilozhenie No 17, 187–190

[4] Abrosimov M. B., Dolgov A. A., “Semeistva tochnykh rasshirenii turnirov”, Prikladnaya diskretnaya matematika, 2008, no. 1, 101–107

[5] Eplett W. J. R., “Self-converse tournaments”, Canadian Mathematical Bulletin, 22 (1979), 23–27 | MR | Zbl