On minimal vertex 1-extensions of special form superslim trees
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 68-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tree is called superslim if all vertices except the root and leaves have degree 2. We consider the minimal vertex 1-extensions of superslim trees and provide a lower bound for the number of additional edges of minimal vertex 1-extensions of arbitrary superslim tree. We describe two families of superslim trees, for which lower bound is achieved.
@article{PDM_2010_12_a32,
     author = {M. B. Abrosimov and D. D. Komarov},
     title = {On minimal vertex 1-extensions of special form superslim trees},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {68--70},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a32/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - D. D. Komarov
TI  - On minimal vertex 1-extensions of special form superslim trees
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 68
EP  - 70
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a32/
LA  - ru
ID  - PDM_2010_12_a32
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A D. D. Komarov
%T On minimal vertex 1-extensions of special form superslim trees
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 68-70
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a32/
%G ru
%F PDM_2010_12_a32
M. B. Abrosimov; D. D. Komarov. On minimal vertex 1-extensions of special form superslim trees. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 68-70. http://geodesic.mathdoc.fr/item/PDM_2010_12_a32/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR

[2] Abrosimov M. B., “Minimalnye vershinnye rasshireniya grafov”, Novye informatsionnye tekhnologii v issledovanii diskretnykh struktur, Tomsk, 2000, 59–64