On minimal edge $k$-extensions of oriented stars
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 67-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G^*$ is $k$-edge extension of graph $G$ if every graph obtained by removing any $k$ edges(arcs) from $G^*$ contains $G$. $k$-edge extension of graph $G$ with $n$ vertices is called minimal if among all $k$-edge extensions of graph $G$ with $n$ vertices it has the minimum possible number of edges (arcs). Oriented star is obtained from unoriented star by replacing edges with arcs. We provide the complete description of minimal $k$-edge extensions for oriented stars.
@article{PDM_2010_12_a31,
     author = {M. B. Abrosimov},
     title = {On minimal edge $k$-extensions of oriented stars},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {67--68},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a31/}
}
TY  - JOUR
AU  - M. B. Abrosimov
TI  - On minimal edge $k$-extensions of oriented stars
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 67
EP  - 68
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a31/
LA  - ru
ID  - PDM_2010_12_a31
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%T On minimal edge $k$-extensions of oriented stars
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 67-68
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a31/
%G ru
%F PDM_2010_12_a31
M. B. Abrosimov. On minimal edge $k$-extensions of oriented stars. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 67-68. http://geodesic.mathdoc.fr/item/PDM_2010_12_a31/

[1] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl

[2] Abrosimov M. B., “O vychislitelnoi slozhnosti rasshirenii grafov”, Prikladnaya diskretnaya matematika, 2009, Prilozhenie No 1, 94–95

[3] Abrosimov M. B., “Minimalnye rasshireniya neorientirovannykh zvezd”, Teoreticheskie problemy informatiki i ee prilozhenii, 7, SGU, Saratov, 2006, 3–5

[4] Abrosimov M. B., “Minimalnye rasshireniya napravlennykh zvezd”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XV Mezhdunar. konf. (Kazan, 2–7 iyunya 2008 g.), Otechestvo, Kazan, 2008, 2