On minimal edge $k$-extensions of oriented stars
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 67-68
Cet article a éte moissonné depuis la source Math-Net.Ru
A graph $G^*$ is $k$-edge extension of graph $G$ if every graph obtained by removing any $k$ edges(arcs) from $G^*$ contains $G$. $k$-edge extension of graph $G$ with $n$ vertices is called minimal if among all $k$-edge extensions of graph $G$ with $n$ vertices it has the minimum possible number of edges (arcs). Oriented star is obtained from unoriented star by replacing edges with arcs. We provide the complete description of minimal $k$-edge extensions for oriented stars.
@article{PDM_2010_12_a31,
author = {M. B. Abrosimov},
title = {On minimal edge $k$-extensions of oriented stars},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {67--68},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a31/}
}
M. B. Abrosimov. On minimal edge $k$-extensions of oriented stars. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 67-68. http://geodesic.mathdoc.fr/item/PDM_2010_12_a31/
[1] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[2] Abrosimov M. B., “O vychislitelnoi slozhnosti rasshirenii grafov”, Prikladnaya diskretnaya matematika, 2009, Prilozhenie No 1, 94–95
[3] Abrosimov M. B., “Minimalnye rasshireniya neorientirovannykh zvezd”, Teoreticheskie problemy informatiki i ee prilozhenii, 7, SGU, Saratov, 2006, 3–5
[4] Abrosimov M. B., “Minimalnye rasshireniya napravlennykh zvezd”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XV Mezhdunar. konf. (Kazan, 2–7 iyunya 2008 g.), Otechestvo, Kazan, 2008, 2