Connections between subspaces on which bent function and its dual function are affine
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 11-12
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study the existence of bent functions on the minimal distance to given bent functions and their regular properties.
@article{PDM_2010_12_a3,
author = {N. A. Kolomeec},
title = {Connections between subspaces on which bent function and its dual function are affine},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {11--12},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a3/}
}
N. A. Kolomeec. Connections between subspaces on which bent function and its dual function are affine. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 11-12. http://geodesic.mathdoc.fr/item/PDM_2010_12_a3/
[1] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20
[2] Canteaut A., Daum M., Dobbertin H., Leander G., “Finding nonnormal bent functions”, Discr. Appl. Math., 154 (2006), 202–218 | DOI | MR | Zbl
[3] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl