Connections between subspaces on which bent function and its dual function are affine
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 11-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the existence of bent functions on the minimal distance to given bent functions and their regular properties.
@article{PDM_2010_12_a3,
     author = {N. A. Kolomeec},
     title = {Connections between subspaces on which bent function and its dual function are affine},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {11--12},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a3/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - Connections between subspaces on which bent function and its dual function are affine
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 11
EP  - 12
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a3/
LA  - ru
ID  - PDM_2010_12_a3
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T Connections between subspaces on which bent function and its dual function are affine
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 11-12
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a3/
%G ru
%F PDM_2010_12_a3
N. A. Kolomeec. Connections between subspaces on which bent function and its dual function are affine. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 11-12. http://geodesic.mathdoc.fr/item/PDM_2010_12_a3/

[1] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20

[2] Canteaut A., Daum M., Dobbertin H., Leander G., “Finding nonnormal bent functions”, Discr. Appl. Math., 154 (2006), 202–218 | DOI | MR | Zbl

[3] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl