About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 44-45
The known square root law of steganographic capacity spreads to Markov chains with unknown transition probability matrix.
@article{PDM_2010_12_a20,
author = {A. M. Shoytov},
title = {About the fact of detecting the noise in finite {Markov} chain with an unknown transition probability matrix},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {44--45},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a20/}
}
TY - JOUR AU - A. M. Shoytov TI - About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix JO - Prikladnaâ diskretnaâ matematika PY - 2010 SP - 44 EP - 45 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDM_2010_12_a20/ LA - ru ID - PDM_2010_12_a20 ER -
A. M. Shoytov. About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 44-45. http://geodesic.mathdoc.fr/item/PDM_2010_12_a20/
[1] Ivanov V. A., “Modeli vkraplenii v odnorodnye sluchainye posledovatelnosti”, Trudy po diskretnoi matematike, 11, no. 1, 2008, 18–34
[2] Ponomarev K. I., “Parametricheskaya model vkrapleniya i ee statisticheskii analiz”, Diskretnaya matematika, 21:4 (2009), 148–157 | MR
[3] Filler T., Ker A. D., Fridrich J., “The square root law of steganographic capacity for Markov covers”, Proc. SPIE, 7254, 2009, 725408, 31–47
[4] Ker A. D., “A capacity result for batch steganography”, IEEE Signal Processing Letters, 14:8 (2007), 525–528 | DOI
[5] Ivchenko G. I., Glibochenko A. F., Ivanov V. A., Medvedev Yu. I., Statisticheskii analiz diskretnykh sluchainykh posledovatelnostei, MIEM, M., 1984, 92 pp.