Constructing the classes of Boolean functions with guaranteed cryptographic properties on the base of coordinate functions of the finite field power mappings
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 10-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an approach to constructing the nonlinear approximations of Boolean functions is offered. The approximations are constructed by using the coordinate functions of the finite field power mapping. The effectiveness of such approximations for bent functions is shown.
@article{PDM_2010_12_a2,
     author = {A. V. Ivanov and V. N. Romanov},
     title = {Constructing the classes of {Boolean} functions with guaranteed cryptographic properties on the base of coordinate functions of the finite field power mappings},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {10--11},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - V. N. Romanov
TI  - Constructing the classes of Boolean functions with guaranteed cryptographic properties on the base of coordinate functions of the finite field power mappings
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 10
EP  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a2/
LA  - ru
ID  - PDM_2010_12_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A V. N. Romanov
%T Constructing the classes of Boolean functions with guaranteed cryptographic properties on the base of coordinate functions of the finite field power mappings
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 10-11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a2/
%G ru
%F PDM_2010_12_a2
A. V. Ivanov; V. N. Romanov. Constructing the classes of Boolean functions with guaranteed cryptographic properties on the base of coordinate functions of the finite field power mappings. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 10-11. http://geodesic.mathdoc.fr/item/PDM_2010_12_a2/

[1] Ivanov A. V., “Ispolzovanie privedennogo predstavleniya bulevykh funktsii pri postroenii ikh nelineinykh approksimatsii”, Vestnik Tomskogo gosuniversiteta, 2007, Prilozhenie No 23, 31–35

[2] Kuzmin A. S., Markov V. T., Nechaev A. A., Shishkov A. B., “Priblizhenie bulevykh funktsii monomialnymi”, Diskretnaya matematika, 18:1 (2006), 9–29 | MR | Zbl

[3] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MNTsMO, M., 2004, 470 pp. | MR

[4] Rothaus O. S., “On “bent” functions”, J. Comb. Theory Ser. A, 20 (1976), 300–305 | DOI | MR | Zbl

[5] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 818 pp. | Zbl