The relationship between structure of the key space and hardness of the McEliece–Sidelnikov Public Key Cryptosystem
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 34-35
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper a number of the problems connected with the hardness of original McEliece PKC and McEliece–Sidelnikov PKC with restrictions on key space is considered. The polynomial equivalence of breaking problems for McEliece PKC and McEliece–Sidelnikov PKC with restrictions on the key space is proved.
@article{PDM_2010_12_a15,
author = {I. V. Chizhov},
title = {The relationship between structure of the key space and hardness of the {McEliece{\textendash}Sidelnikov} {Public} {Key} {Cryptosystem}},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {34--35},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a15/}
}
TY - JOUR AU - I. V. Chizhov TI - The relationship between structure of the key space and hardness of the McEliece–Sidelnikov Public Key Cryptosystem JO - Prikladnaâ diskretnaâ matematika PY - 2010 SP - 34 EP - 35 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDM_2010_12_a15/ LA - ru ID - PDM_2010_12_a15 ER -
I. V. Chizhov. The relationship between structure of the key space and hardness of the McEliece–Sidelnikov Public Key Cryptosystem. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 34-35. http://geodesic.mathdoc.fr/item/PDM_2010_12_a15/
[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., 1978, 114–116
[2] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida-Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | MR | Zbl
[3] Chizhov I. V., “Klyuchevoe prostranstvo kriptosistemy Mak-Elisa-Sidelnikova”, Diskretnaya matematika, 21:3 (2009), 132–159 | MR