Symmetric stream and finite automaton ciphersystems
Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 59-68

Voir la notice de l'article provenant de la source Math-Net.Ru

The following statements are proved in the paper: 1) stream ciphersystems with the indistinguishable key stream generators are indistinguishable themselves; 2) the output function of the encryption automaton in any finite automaton ciphersystem is injective one for any its state and key being fixed; 3) the classes of the stream and of the finite automaton ciphersystems are functionally equivalent; 4) every selfsynchronizing with a delay $\tau$ finite automaton ciphersystem with the strongly connected projections of the encryption automaton is indistinguishable from a ciphersystem built on the base of a shiftregister of the length $\tau$. Besides, a descriptive and a constructive definitions of the selfsynchronizing stream ciphersystem are introduced, and the equivalence between them are stated.
@article{PDM_2009_3_a6,
     author = {I. V. Pankratov},
     title = {Symmetric stream and finite automaton ciphersystems},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a6/}
}
TY  - JOUR
AU  - I. V. Pankratov
TI  - Symmetric stream and finite automaton ciphersystems
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 59
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_3_a6/
LA  - ru
ID  - PDM_2009_3_a6
ER  - 
%0 Journal Article
%A I. V. Pankratov
%T Symmetric stream and finite automaton ciphersystems
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 59-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_3_a6/
%G ru
%F PDM_2009_3_a6
I. V. Pankratov. Symmetric stream and finite automaton ciphersystems. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 59-68. http://geodesic.mathdoc.fr/item/PDM_2009_3_a6/