An analitic approach in the theory of context-free languages Greibach normal form
Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 112-116

Voir la notice de l'article provenant de la source Math-Net.Ru

Context-free languages are consider as formal power series, which are solutions of the polynomial equations systems with noncommutative variables respectively multiplication. It is suggested to investigate these systems in Greibach normal form, that allows to research it more effectively. Commutative images of languages and defining systems are considered in complex domain.
@article{PDM_2009_3_a12,
     author = {O. I. Egorushkin and K. V. Safonov},
     title = {An analitic approach in the theory of context-free languages {Greibach} normal form},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {112--116},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/}
}
TY  - JOUR
AU  - O. I. Egorushkin
AU  - K. V. Safonov
TI  - An analitic approach in the theory of context-free languages Greibach normal form
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 112
EP  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/
LA  - ru
ID  - PDM_2009_3_a12
ER  - 
%0 Journal Article
%A O. I. Egorushkin
%A K. V. Safonov
%T An analitic approach in the theory of context-free languages Greibach normal form
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 112-116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/
%G ru
%F PDM_2009_3_a12
O. I. Egorushkin; K. V. Safonov. An analitic approach in the theory of context-free languages Greibach normal form. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 112-116. http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/