An analitic approach in the theory of context-free languages Greibach normal form
Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 112-116
Voir la notice de l'article provenant de la source Math-Net.Ru
Context-free languages are consider as formal power series, which are solutions of the polynomial equations systems with noncommutative variables respectively multiplication. It is suggested to investigate these systems in Greibach normal form, that allows to research it more effectively. Commutative images of languages and defining systems are considered in complex domain.
@article{PDM_2009_3_a12,
author = {O. I. Egorushkin and K. V. Safonov},
title = {An analitic approach in the theory of context-free languages {Greibach} normal form},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {112--116},
publisher = {mathdoc},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/}
}
TY - JOUR AU - O. I. Egorushkin AU - K. V. Safonov TI - An analitic approach in the theory of context-free languages Greibach normal form JO - Prikladnaâ diskretnaâ matematika PY - 2009 SP - 112 EP - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/ LA - ru ID - PDM_2009_3_a12 ER -
O. I. Egorushkin; K. V. Safonov. An analitic approach in the theory of context-free languages Greibach normal form. Prikladnaâ diskretnaâ matematika, no. 3 (2009), pp. 112-116. http://geodesic.mathdoc.fr/item/PDM_2009_3_a12/