Algorithms for constructing the shortest allowable partitions of finite sets
Prikladnaâ diskretnaâ matematika, no. 2 (2009), pp. 79-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms for constructing the shortest allowable partitions of finite sets both for any monotonic and nonmonotonic two components allowing functions are presented in the paper. The synthesis problem for minimal complexity PLD-circuits and the composition problem of an electronic circuit into the minimal number of cells are good examples for the application of these algorithms.
@article{PDM_2009_2_a5,
     author = {L. N. Andreeva},
     title = {Algorithms for constructing the shortest allowable partitions of finite sets},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {79--95},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/}
}
TY  - JOUR
AU  - L. N. Andreeva
TI  - Algorithms for constructing the shortest allowable partitions of finite sets
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 79
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/
LA  - ru
ID  - PDM_2009_2_a5
ER  - 
%0 Journal Article
%A L. N. Andreeva
%T Algorithms for constructing the shortest allowable partitions of finite sets
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 79-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/
%G ru
%F PDM_2009_2_a5
L. N. Andreeva. Algorithms for constructing the shortest allowable partitions of finite sets. Prikladnaâ diskretnaâ matematika, no. 2 (2009), pp. 79-95. http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/

[1] Agibalov G. P., Belyaev V. A., Tekhnologiya resheniya kombinatorno-logicheskikh zadach metodom sokraschennogo obkhoda dereva poiska, Izd-vo Tom. un-ta, Tomsk, 1981, 125 pp.

[2] Oranov A. M., “Algoritm postroeniya kratchaishikh monotonno dopustimykh razbienii konechnykh mnozhestv”, Avtomatizatsiya proektirovaniya diskretnykh sistem, Materialy vtoroi Mezhdunar. konf., T. 3 (12–14 noyabrya 1997 goda, g. Minsk), Institut tekhnicheskoi kibernetiki NAN Belarusi, Minsk, 1997, 228–231

[3] Andreeva L. N., Oranov A. M., “Modifitsirovannyi algoritm postroeniya kratchaishikh monotonno dopustimykh razbienii konechnykh mnozhestv”, Avtomatizatsiya proektirovaniya diskretnykh sistem, Materialy chetvertoi Mezhdunar. nauch.-tekhnich. konf., T. 3 (14–16 noyabrya 2001 goda, g. Minsk), Institut tekhnicheskoi kibernetiki NAN Belarusi, Minsk, 2001, 150–157

[4] Andreeva L. N., Oranov A. M., “Algoritmy postroeniya kratchaishikh nemonotonno dopustimykh razbienii konechnykh mnozhestv”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2003, no. 6, 188–192

[5] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978, 432 pp. | MR

[6] Oranov A. M., Andreeva L. N., “Algoritm minimalnogo razbieniya sistemy mnozhestv”, Avtomatika i vychislitelnaya tekhnika, 1992, no. 2, 37–44

[7] Oranov A. M., Andreeva L. N., “Algoritm sinteza i komponovki odnoyarusnykh skhem v nekotorykh bazisakh”, Avtomatika i vychislitelnaya tekhnika, 1992, no. 5, 57–63

[8] Oranov A. M., Andreeva L. N., “Algoritm minimalnogo razbieniya nekotorogo nabora ob'ektov”, Avtomatika i vychislitelnaya tekhnika, 1993, no. 2, 27–35

[9] Agibalov G. P., Oranov A. M., “Algoritmy pokrytiya skhem svobodnymi modulyami”, Avtomatika i vychislitelnaya tekhnika, 1977, no. 4, 15–16 | Zbl

[10] Agibalov G. P., Oranov A. M., “Pokrytie logicheskikh skhem modulyami nekotorykh seriinykh sistem”, Kibernetika, 1986, no. 2, 34–38 | MR | Zbl

[11] Oranov A. M., “Algoritm sinteza diskretnykh skhem v bazise programmiruemykh funktsionalnykh blokov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2004, no. 9, 240–244

[12] Oranov A. M., “K sintezu kombinatsionnykh skhem v bazise PLIS”, Avtomatika i vychislitelnaya tekhnika, 1996, no. 1, 27–35

[13] Oranov A. M., “Algoritm sinteza tsifrovykh skhem v bazise neodnorodnykh PML”, Modelirovanie intellektualnykh protsessov proektirovaniya i proizvodstva, Materialy Mezhdunar. nauch.-tekhnich. konf. (10–12 noyabrya 1998 goda, g. Minsk), Institut tekhnicheskoi kibernetiki NAN Belarusi, Minsk, 1998, 214–215

[14] Oranov A. M., “Metod postroeniya diskretnykh skhem na baze kompleksnykh programmiruemykh logicheskikh ustroistv”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2002, no. 1(II), 102–107

[15] Andreeva L. N., Oranov A. M., “O slozhnosti nekotorykh zadach razbieniya”, Izv. RAN. Teoriya i sistemy upravleniya, 1997, no. 2, 114–116 | Zbl

[16] Oranov A. M., “O slozhnosti zadachi kratchaishego dopustimogo razbieniya”, Vsesibirskie chteniya po matematike i mekhanike, Materialy Mezhdunar. konf., T. 1. Matematika, Izd-vo Tom. un-ta, Tomsk, 1997, 161–162

[17] Andreeva L. N., Oranov A. M., “Otsenki pogreshnosti dvukh priblizhennykh algoritmov razbieniya”, Izv. RAN. Teoriya i sistemy upravleniya, 1999, no. 1, 89–93 | MR | Zbl