Algorithms for constructing the shortest allowable partitions of finite sets
Prikladnaâ diskretnaâ matematika, no. 2 (2009), pp. 79-95

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms for constructing the shortest allowable partitions of finite sets both for any monotonic and nonmonotonic two components allowing functions are presented in the paper. The synthesis problem for minimal complexity PLD-circuits and the composition problem of an electronic circuit into the minimal number of cells are good examples for the application of these algorithms.
@article{PDM_2009_2_a5,
     author = {L. N. Andreeva},
     title = {Algorithms for constructing the shortest allowable partitions of finite sets},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {79--95},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/}
}
TY  - JOUR
AU  - L. N. Andreeva
TI  - Algorithms for constructing the shortest allowable partitions of finite sets
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 79
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/
LA  - ru
ID  - PDM_2009_2_a5
ER  - 
%0 Journal Article
%A L. N. Andreeva
%T Algorithms for constructing the shortest allowable partitions of finite sets
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 79-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/
%G ru
%F PDM_2009_2_a5
L. N. Andreeva. Algorithms for constructing the shortest allowable partitions of finite sets. Prikladnaâ diskretnaâ matematika, no. 2 (2009), pp. 79-95. http://geodesic.mathdoc.fr/item/PDM_2009_2_a5/