Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2009_10_a9, author = {A. M. Kovalev and V. A. Kozlovskii and V. F. Shcherbak}, title = {Generalized invertibility of dynamical systems for encryption problems}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {20--21}, publisher = {mathdoc}, number = {10}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/} }
TY - JOUR AU - A. M. Kovalev AU - V. A. Kozlovskii AU - V. F. Shcherbak TI - Generalized invertibility of dynamical systems for encryption problems JO - Prikladnaâ diskretnaâ matematika PY - 2009 SP - 20 EP - 21 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/ LA - ru ID - PDM_2009_10_a9 ER -
A. M. Kovalev; V. A. Kozlovskii; V. F. Shcherbak. Generalized invertibility of dynamical systems for encryption problems. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 20-21. http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/
[1] Kovalev A. M., Scherbak V. F., Upravlyaemost, nablyudaemost, identifitsiruemost dinamicheskikh sistem, Nauk. dumka, Kiev, 1993, 285 pp.
[2] Feldmann U., Hasler M., Schwarz W., “Communication by chaotic signals: the inverse system approach”, Int. J. Circ. Theory Appl., 24 (1996), 551–579 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[3] Kovalev A. M., Kozlovskii V. A., Scherbak V. F., “Obratimye dinamicheskie sistemy s peremennoi razmernostyu fazovogo prostranstva v zadachakh kriptograficheskogo preobrazovaniya informatsii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 39–44