Generalized invertibility of dynamical systems for encryption problems
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 20-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for transformation of the digital information based on the discrete dynamical system is suggested. The determination of input is carried out by the special inverse system. Designs of the inverse systems are offered for the different degrees of invertibility: invertable, identifiable and invertable with respect to several trajectories. It is shown that maximally wide class of systems becomes identified under several trajectories. The communication scheme is proposed when a transferrable signal is used for the synthesis of additional outputs. Then, information message determination is carry out on the base of several trajectories model. The finite automata constructions realizing this approach are considered.
@article{PDM_2009_10_a9,
     author = {A. M. Kovalev and V. A. Kozlovskii and V. F. Shcherbak},
     title = {Generalized invertibility of dynamical systems for encryption problems},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {20--21},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/}
}
TY  - JOUR
AU  - A. M. Kovalev
AU  - V. A. Kozlovskii
AU  - V. F. Shcherbak
TI  - Generalized invertibility of dynamical systems for encryption problems
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 20
EP  - 21
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/
LA  - ru
ID  - PDM_2009_10_a9
ER  - 
%0 Journal Article
%A A. M. Kovalev
%A V. A. Kozlovskii
%A V. F. Shcherbak
%T Generalized invertibility of dynamical systems for encryption problems
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 20-21
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/
%G ru
%F PDM_2009_10_a9
A. M. Kovalev; V. A. Kozlovskii; V. F. Shcherbak. Generalized invertibility of dynamical systems for encryption problems. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 20-21. http://geodesic.mathdoc.fr/item/PDM_2009_10_a9/

[1] Kovalev A. M., Scherbak V. F., Upravlyaemost, nablyudaemost, identifitsiruemost dinamicheskikh sistem, Nauk. dumka, Kiev, 1993, 285 pp.

[2] Feldmann U., Hasler M., Schwarz W., “Communication by chaotic signals: the inverse system approach”, Int. J. Circ. Theory Appl., 24 (1996), 551–579 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[3] Kovalev A. M., Kozlovskii V. A., Scherbak V. F., “Obratimye dinamicheskie sistemy s peremennoi razmernostyu fazovogo prostranstva v zadachakh kriptograficheskogo preobrazovaniya informatsii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 39–44