Algorithms for the graph isomorphism problem based on graph deregularisation
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 101-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complexity of the graph isomorphism problem is still an open question. There are no proofs of its NP-completeness or its NP-hardness either. And yet no polynomial-time algorithm for the problem has been designed. We present schemes of algorithms for the graph isomorphism problem. These schemes are based on a successive simplifying tested graphs. Presented algorithms use elements of inverse matrices of the modified graph adjacency matrices as a graph invariant. Results of numerical experiments and computational complexity of the algorithms are considered.
@article{PDM_2009_10_a52,
     author = {I. V. Shirokov and A. V. Prolubnikov},
     title = {Algorithms for the graph isomorphism problem based on graph deregularisation},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {101--102},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a52/}
}
TY  - JOUR
AU  - I. V. Shirokov
AU  - A. V. Prolubnikov
TI  - Algorithms for the graph isomorphism problem based on graph deregularisation
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 101
EP  - 102
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a52/
LA  - ru
ID  - PDM_2009_10_a52
ER  - 
%0 Journal Article
%A I. V. Shirokov
%A A. V. Prolubnikov
%T Algorithms for the graph isomorphism problem based on graph deregularisation
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 101-102
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a52/
%G ru
%F PDM_2009_10_a52
I. V. Shirokov; A. V. Prolubnikov. Algorithms for the graph isomorphism problem based on graph deregularisation. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 101-102. http://geodesic.mathdoc.fr/item/PDM_2009_10_a52/

[1] Faizullin R. T., Prolubnikov A. V., “An algorithm of the spectral splitting for the double permutation cipher”, Recognition and Image Analysis, 12:4 (2002), 310–324, MAIK, Nauka

[2] Prolubnikov A. V., Faizullin R. T., “Postroenie zaschischennogo videokanala s ispolzovaniem izomorfizma grafov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2004, no. 9(1), 71–74

[3] Foggia P., Sansone C., Vento M., A Database of graphs for isomorphism and sub-graph isomorphism benchmarking, Proc. of the 3rd IAPR TC-15 international workshop on graph-based representations, Italy, 2001, 157–168

[4] Miyazaki\;T., “The complexity of McKay's canonical labeling algorithm”, Groups and Computation, II, Amer. Math. Soc., Providence, RI, 1997, 239–256 | MR | Zbl

[5] Strongly Regular Graphs, http://www.maths.gla.ac.uk/~es